RESUMEN
BACKGROUND: There is a critical need for development of biomarkers to noninvasively monitor for lung transplant rejection. We investigated the potential of circulating donor lung-specific exosome profiles for time-sensitive diagnosis of acute rejection in a rat orthotopic lung transplant model. METHODS: Left lungs from Wistar transgenic rats expressing human CD63-GFP, an exosome marker, were transplanted into fully MHC-mismatched Lewis recipients or syngeneic controls. Recipient blood was collected between 4 h and 10 d after transplantation, and plasma was processed for exosome isolation by size exclusion column chromatography and ultracentrifugation. Circulating donor exosomes were profiled using antihuman CD63 antibody quantum dot on the nanoparticle detector and via GFP trigger on the nanoparticle flow cytometer. RESULTS: In syngeneic controls, steady-state levels of circulating donor exosomes were detected at all posttransplant time points. Allogeneic grafts lost perfusion by day 8, consistent with acute rejection. Levels of circulating donor exosomes peaked on day 1, decreased significantly by day 2, and then reached baseline levels by day 3. Notably, decrease in peripheral donor exosome levels occurred before grafts had histological evidence of acute rejection. CONCLUSIONS: Circulating donor lung-specific exosome profiles enable an early detection of acute rejection before histologic manifestation of injury to the pulmonary allograft. As acute rejection episodes are a major risk factor for the development of chronic lung allograft dysfunction, this biomarker may provide a novel noninvasive diagnostic platform that can translate into earlier therapeutic intervention for lung transplant patients.
Asunto(s)
Exosomas , Trasplante de Pulmón , Animales , Rechazo de Injerto , Humanos , Pulmón , Trasplante de Pulmón/efectos adversos , Ratas , Ratas Endogámicas Lew , Ratas Wistar , RoedoresRESUMEN
OBJECTIVES: It is not known how lung injury progression during mechanical ventilation modifies pulmonary responses to prone positioning. We compared the effects of prone positioning on regional lung aeration in late versus early stages of lung injury. DESIGN: Prospective, longitudinal imaging study. SETTING: Research imaging facility at The University of Pennsylvania (Philadelphia, PA) and Medical and Surgical ICUs at Massachusetts General Hospital (Boston, MA). SUBJECTS: Anesthetized swine and patients with acute respiratory distress syndrome (acute respiratory distress syndrome). INTERVENTIONS: Lung injury was induced by bronchial hydrochloric acid (3.5 mL/kg) in 10 ventilated Yorkshire pigs and worsened by supine nonprotective ventilation for 24 hours. Whole-lung CT was performed 2 hours after hydrochloric acid (Day 1) in both prone and supine positions and repeated at 24 hours (Day 2). Prone and supine images were registered (superimposed) in pairs to measure the effects of positioning on the aeration of each tissue unit. Two patients with early acute respiratory distress syndrome were compared with two patients with late acute respiratory distress syndrome, using electrical impedance tomography to measure the effects of body position on regional lung mechanics. MEASUREMENTS AND MAIN RESULTS: Gas exchange and respiratory mechanics worsened over 24 hours, indicating lung injury progression. On Day 1, prone positioning reinflated 18.9% ± 5.2% of lung mass in the posterior lung regions. On Day 2, position-associated dorsal reinflation was reduced to 7.3% ± 1.5% (p < 0.05 vs Day 1). Prone positioning decreased aeration in the anterior lungs on both days. Although prone positioning improved posterior lung compliance in the early acute respiratory distress syndrome patients, it had no effect in late acute respiratory distress syndrome subjects. CONCLUSIONS: The effects of prone positioning on lung aeration may depend on the stage of lung injury and duration of prior ventilation; this may limit the clinical efficacy of this treatment if applied late.
Asunto(s)
Lesión Pulmonar/complicaciones , Posición Prona/fisiología , Adulto , Anciano , Boston , Femenino , Humanos , Estudios Longitudinales , Lesión Pulmonar/diagnóstico por imagen , Lesión Pulmonar/fisiopatología , Masculino , Persona de Mediana Edad , Pennsylvania , Respiración con Presión Positiva/métodos , Estudios Prospectivos , Resultado del TratamientoRESUMEN
BACKGROUND: Donor smoking history and higher fraction of inspired oxygen (FIO2) at reperfusion are associated with primary graft dysfunction (PGD) after lung transplantation. We hypothesized that oxidative injury biomarkers would be elevated in PGD, with higher levels associated with donor exposure to cigarette smoke and recipient hyperoxia at reperfusion. METHODS: We performed a nested case-control study of 72 lung transplant recipients from the Lung Transplant Outcomes Group cohort. Using mass spectroscopy, F2-isoprostanes and isofurans were measured in plasma collected after transplantation. Cases were defined in 2 ways: grade 3 PGD present at day 2 or day 3 after reperfusion (severe PGD) or any grade 3 PGD (any PGD). RESULTS: There were 31 severe PGD cases with 41 controls and 35 any PGD cases with 37 controls. Plasma F2-isoprostane levels were higher in severe PGD cases compared with controls (28.6 pg/ml vs 19.8 pg/ml, p = 0.03). Plasma F2-isoprostane levels were higher in severe PGD cases compared with controls (29.6 pg/ml vs 19.0 pg/ml, p = 0.03) among patients reperfused with FIO2 >40%. Among recipients of lungs from donors with smoke exposure, plasma F2-isoprostane (38.2 pg/ml vs 22.5 pg/ml, p = 0.046) and isofuran (66.9 pg/ml vs 34.6 pg/ml, p = 0.046) levels were higher in severe PGD compared with control subjects. CONCLUSIONS: Plasma levels of lipid peroxidation products are higher in patients with severe PGD, in recipients of lungs from donors with smoke exposure, and in recipients exposed to higher Fio2 at reperfusion. Oxidative injury is an important mechanism of PGD and may be magnified by donor exposure to cigarette smoke and hyperoxia at reperfusion.