Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
High Alt Med Biol ; 22(3): 249-262, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34152867

RESUMEN

Stewart, Glenn M., Troy J. Cross, Michael J. Joyner, Steven C. Chase, Timothy Curry, Josh Lehrer-Graiwer, Kobina Dufu, Nicholas E. Vlahakis, and Bruce D. Johnson. Impact of pharmacologically left shifting the oxygen-hemoglobin dissociation curve on arterial blood gases and pulmonary gas exchange during maximal exercise in hypoxia. High Alt Med Biol. 22:249-262, 2021. Introduction: Physiological and pathological conditions, which reduce the loading of oxygen onto hemoglobin (Hb), can impair exercise capacity and cause debilitating symptoms. Accordingly, this study examined the impact of pharmacologically left shifting the oxygen-hemoglobin dissociation curve (ODC) on arterial oxygen saturation (SaO2) and exercise capacity. Methods: Eight healthy subjects completed a maximal incremental exercise test in hypoxia (FIO2: 0.125) and normoxia (FIO2: 0.21) before (Day 1) and after (Day 15) daily ingestion of 900 mg of voxelotor (an oxygen/Hb affinity modulator). Pulmonary gas exchange and arterial blood gases were assessed throughout exercise and at peak. Data for a 1,500 mg daily drug dose are reported in a limited cohort (n = 3). Results: Fourteen days of drug administration left shifted the ODC (p50 measured under standard conditions, Day 1: 28.0 ± 2.1 mmHg vs. Day 15: 26.1 ± 1.8 mmHg, p < 0.05). Throughout incremental exercise in hypoxia, SaO2 was systematically higher after drug (peak exercise SaO2 on Day 1: 71 ± 2 vs. Day 15: 81% ± 2%, p < 0.001), whereas oxygen extraction (Ca-vO2 diff) and consumption (VO2) were similar (peak exercise Ca-vO2 diff on Day 1: 11.5 ± 1.7 vs. Day 15: 11.0 ± 1.8 ml/100 ml blood, p = 0.417; peak VO2 on Day 1: 2.59 ± 0.39 vs. Day 15: 2.47 ± 0.43 l/min, p = 0.127). Throughout incremental exercise in normoxia, SaO2 was systematically higher after drug, whereas peak VO2 was reduced (peak exercise SaO2 on Day 1: 93.9 ± 1.8 vs. Day 15: 95.8% ± 1.0%, p = 0.008; peak VO2 on Day 1: 3.62 ± 0.55 vs. Day 15: 3.26 ± 52 l/min, p = 0.001). Conclusion: Pharmacologically increasing the affinity of Hb for oxygen improved SaO2 during hypoxia without impacting exercise capacity; however, left shifting the ODC in healthy individuals appears detrimental to exercise capacity in normoxia. Left shifting the ODC to different magnitudes and under more chronic forms of hypoxia warrants further study.


Asunto(s)
Oxígeno , Intercambio Gaseoso Pulmonar , Prueba de Esfuerzo , Hemoglobinas , Humanos , Hipoxia , Consumo de Oxígeno
2.
J Card Fail ; 24(7): 479-483, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29678727

RESUMEN

BACKGROUND: Periodic breathing (PB) is often observed in patients with HF at rest, with sleep and during exercise. However, mechanisms underlying abnormal ventilatory control are not entirely established. METHODS: Eleven subjects with HF (10 males, age = 69 ± 12 y) and 12 age-matched control subjects (8 males, age = 65 ± 9 y) participated in the study. PB was defined as a peak in the 0.003-0.04 Hz frequency range of the flow signal during 6 minutes of awake resting breathing. Thoracic blood volumes (Vt, thorax; Vh, heart; Vp, pulmonary), mean transit times (MTTs), and extravascular lung water (EVLW) were quantified using computerized tomography. RESULTS: PB was observed in 7 subjects with HF and was associated with worse functional status. The HF PB-present group had thoracic blood volumes nearly double those of control and HF PB-absent subjects (volumes reported as mL/m2 body surface area, P values vs control: control = 813 ± 246, HF PB-absent = 822 ± 161 P = .981, HF PB-present = 1579 ± 548 P = .002). PB was associated with longer pulmonary MTT (control = 6.7 ± 1.2 s, HF PB-absent = 6.0 ± 0.8 s, HF PB-present = 8.4 ± 1.6 s; P = .033, HF PB-present vs HF PB-absent). EVLW was not elevated in the PB group. CONCLUSIONS: Subjects with HF and PB at rest have greater centralization of blood volume.


Asunto(s)
Volumen Sanguíneo/fisiología , Insuficiencia Cardíaca/fisiopatología , Respiración , Tórax/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Anciano , Prueba de Esfuerzo , Femenino , Insuficiencia Cardíaca/diagnóstico , Humanos , Masculino , Descanso
3.
ESC Heart Fail ; 5(2): 364-371, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29345431

RESUMEN

AIMS: The effect of extravascular lung water (EVLW) and relationship to functional status as a result of acute decompensated heart failure (ADHF) are not well understood. We sought to quantify changes in clinical variables, EVLW, airway anatomy, spirometry, and diffusing capacity for carbon monoxide before and after treatment for ADHF. METHODS AND RESULTS: Fifteen patients were recruited within 24 h of hospital admission. Spirometry, diffusing capacity for carbon monoxide, and surrogates of EVLW by computed tomography were measured and were then repeated within 24 h of discharge. From the computed tomography (CT) scan, surrogates of EVLW were calculated from the distribution of CT attenuation of the lung tissue. Airways were segmented using the VIDA Apollo software. Patients were hospitalized for 4.6 ± 2.1 days, had 10 ± 4.8 L of fluid removed (7.0 ± 4.2 L between study visits), and lost 7.1 ± 4.9 kg. Patients had significant clearance of fluid from the lungs (per cent change: mean, 4.2 ± 6.1%; skew, 17.5 ± 27.0%; kurtosis, 37.6 ± 56.7%; full-width half-maximum, 10.2 ± 13.5%). Static lung volumes and maximal flows improved significantly (per cent change: forced vital capacity, 14.5 ± 13.6%; forced expiratory volume in 1 s, 15.9 ± 14.0%; forced expiratory flow at 25-75% of forced vital capacity, 27.2 ± 42.9%). The ratio of membrane conductance to capillary blood volume improved significantly (per cent change: alveolar-capillary membrane conductance/capillary blood volume, 23.4 ± 22.8%). Weight loss during hospitalization was significantly correlated with improved spirometry and diffusing capacity. CONCLUSIONS: Extravascular lung water contributes to the pulmonary congestive syndrome in ADHF patients, and its clearance is an important component of the improvement in pulmonary function as a result of inpatient treatment.


Asunto(s)
Diuresis/fisiología , Agua Pulmonar Extravascular/fisiología , Insuficiencia Cardíaca/fisiopatología , Pulmón/fisiopatología , Edema Pulmonar/etiología , Enfermedad Aguda , Anciano , Volumen Sanguíneo , Femenino , Estudios de Seguimiento , Insuficiencia Cardíaca/complicaciones , Humanos , Pulmón/diagnóstico por imagen , Masculino , Capacidad de Difusión Pulmonar , Edema Pulmonar/fisiopatología , Factores de Tiempo , Capacidad Vital
4.
Physiol Rep ; 6(2)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29368799

RESUMEN

Alveolar-capillary surface area for pulmonary gas exchange falls with aging, causing a reduction in lung diffusing capacity for carbon monoxide (DLCO). However, during exercise additional factors may influence DLCO, including pulmonary blood flow and pulmonary vascular pressures. First, we sought to determine the age-dependent effect of incremental exercise on pulmonary vascular pressures and DLCO. We also aimed to investigate the dependence of DLCO on pulmonary vascular pressures during exercise via sildenafil administration to reduce pulmonary smooth muscle tone. Nine younger (27 ± 4 years) and nine older (70 ± 3 years) healthy subjects performed seven 5-min exercise stages at rest, 0 (unloaded), 10, 15, 30, 50, and 70% of peak workload before and after sildenafil. DLCO, cardiac output (Q), and pulmonary artery and wedge pressure (mPAP and mPCWP; subset of participants) were collected at each stage. mPAP was higher (P = 0.029) and DLCO was lower (P = 0.009) throughout exercise in older adults; however, the rate of rise in mPAP and DLCO with increasing Q was not different. A reduction in pulmonary smooth muscle tone via sildenafil administration reduced mPAP, mPCWP, and the transpulmonary gradient (TPG = mPAP-mPCWP) in younger and older subjects (P < 0.001). DLCO was reduced following the reduction in mPAP and TPG, regardless of age (P < 0.001). In conclusion, older adults successfully adapt to age-dependent alterations in mPAP and DLCO. Furthermore, DLCO is dependent on pulmonary vascular pressures, likely to maintain adequate pulmonary capillary recruitment. The rise in pulmonary artery pressure with aging may be required to combat pulmonary vascular remodeling and maintain lung diffusing capacity, particularly during exercise.


Asunto(s)
Ejercicio Físico/fisiología , Envejecimiento Saludable/fisiología , Capacidad de Difusión Pulmonar/fisiología , Resistencia Vascular/fisiología , Adulto , Anciano , Femenino , Humanos , Pulmón/irrigación sanguínea , Masculino , Circulación Pulmonar/fisiología
5.
High Alt Med Biol ; 18(4): 343-354, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28876128

RESUMEN

Wheatley, Courtney M., Sarah E. Baker, Bryan J. Taylor, Manda L. Keller-Ross, Steven C. Chase, Alex R. Carlson, Robert J. Wentz, Eric M. Snyder, and Bruce D. Johnson. Influence of inhaled amiloride on lung fluid clearance in response to normobaric hypoxia in healthy individuals. High Alt Med Biol 18:343-354, 2017. AIM: To investigate the role of epithelial sodium channels (ENaC) on lung fluid clearance in response to normobaric hypoxia, 20 healthy subjects were exposed to 15 hours of hypoxia (fraction of inspired oxygen [FiO2] = 12.5%) on two randomized occasions: (1) inhaled amiloride (A) (1.5 mg/5 mL saline); and (2) inhaled saline placebo (P). Changes in lung fluid were assessed through chest computed tomography (CT) for lung tissue volume (TV), and the diffusion capacity of the lungs for carbon monoxide (DLCO) and nitric oxide (DLNO) for pulmonary capillary blood volume (VC). Extravascular lung water (EVLW) was derived as TV-VC and changes in the CT attenuation distribution histograms were reviewed. RESULTS: Normobaric hypoxia caused (1) a reduction in EVLW (change from baseline for A vs. P, -8.5% ± 3.8% vs. -7.9% ± 5.2%, p < 0.05), (2) an increase in VC (53.6% ± 28.9% vs. 53.9% ± 52.3%, p < 0.05), (3) a small increase in DLCO (9.6% ± 29.3% vs. 9.9% ± 23.9%, p > 0.05), and (4) CT attenuation distribution became more negative, leftward skewed, and kurtotic (p < 0.05). CONCLUSION: Acute normobaric hypoxia caused a reduction in lung fluid that was unaffected by ENaC inhibition through inhaled amiloride. Although possible amiloride-sensitive ENaC may not be necessary to maintain lung fluid balance in response to hypoxia, it is more probable that normobaric hypoxia promotes lung fluid clearance rather than accumulation for the majority of healthy individuals. The observed reduction in interstitial lung fluid means alveolar fluid clearance may not have been challenged.


Asunto(s)
Amilorida/administración & dosificación , Bloqueadores del Canal de Sodio Epitelial/administración & dosificación , Canales Epiteliales de Sodio/fisiología , Agua Pulmonar Extravascular/efectos de los fármacos , Pulmón/efectos de los fármacos , Administración por Inhalación , Adulto , Presión Atmosférica , Volumen Sanguíneo/efectos de los fármacos , Femenino , Transferencias de Fluidos Corporales/efectos de los fármacos , Voluntarios Sanos , Humanos , Hipoxia/fisiopatología , Pulmón/diagnóstico por imagen , Pulmón/fisiología , Masculino , Capacidad de Difusión Pulmonar/efectos de los fármacos , Distribución Aleatoria , Tomografía Computarizada por Rayos X , Adulto Joven
6.
J Card Fail ; 23(9): 690-696, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28716688

RESUMEN

INTRODUCTION: Pulmonary congestion is a common finding of heart failure (HF), but it remains unclear how pulmonary and heart blood volumes (Vp and Vh, respectively) and extravascular lung water (EVLW) change in stable HF and affect lung function. METHODS: Fourteen patients with HF (age 68 ± 11 y, LVEF 33 ± 8%) and 12 control subjects (age 65 ± 9 y) were recruited. A pulmonary function test, thoracic computerized tomographic (CT) scan, and contrast perfusion scan were performed. From the thoracic scan, a histogram of CT attenuation of lung tissue was generated and skew, kurtosis, and full-width half-max (FWHM) calculated as surrogates of EVLW. Blood volumes were calculated from the transit time of the contrast through the great vessels of the heart. RESULTS: Patients with HF had greater Vp and Vh (Vp 0.55 ± 0.21 L vs 0.41 ± 0.13 L; Vh 0.53 ± 0.33 L vs 0.40 ± 0.15 L) and EVLW (skew 3.2 ± 0.5 vs 3.7 ± 0.7; kurtosis 19.4 ± 6.6 vs 25.9 ± 9.4; FWHM 73 ± 13 HU vs 59 ± 9 HU). Spirometric measures were decreased in HF (percentage of predicted: forced vital capacity 86 ± 17% vs 104 ± 9%; forced expiratory volume in 1 second 83 ± 20% vs 105 ± 11%; maximal mid-expiratory flow 82 ± 42% vs 115 ± 43%). Vp was associated with decreased expiratory flows, and EVLW was associated with decreased lung volumes. CONCLUSIONS: Congestion in stable patients with HF includes expanded Vp and Vh and increased EVLW associated with reductions in lung volumes and expiratory flows.


Asunto(s)
Volumen Sanguíneo/fisiología , Agua Pulmonar Extravascular/diagnóstico por imagen , Agua Pulmonar Extravascular/fisiología , Insuficiencia Cardíaca/diagnóstico por imagen , Edema Pulmonar/diagnóstico por imagen , Volumen de Ventilación Pulmonar/fisiología , Anciano , Enfermedad Crónica , Femenino , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Edema Pulmonar/complicaciones , Edema Pulmonar/fisiopatología , Tomografía Computarizada por Rayos X/tendencias
7.
J Heart Lung Transplant ; 36(4): 418-426, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27863863

RESUMEN

BACKGROUND: The purpose of this study was to determine: (1) whether stable heart failure patients with reduced ejection fraction (HFrEF) have elevated extravascular lung water (EVLW) when compared with healthy control subjects; and (2) the effect of acute ß2-adrenergic receptor (ß2AR) agonist inhalation on lung fluid balance. METHODS: Twenty-two stable HFrEF patients and 18 age- and gender-matched healthy subjects were studied. Lung diffusing capacity for carbon monoxide (DLCO), alveolar-capillary membrane conductance (DmCO), pulmonary capillary blood volume (Vc) (via re-breathe) and lung tissue volume (Vtis) (via computed tomography) were assessed before and within 30 minutes after administration of nebulized albuterol. EVLW was derived as Vtis - Vc. RESULTS: Before administration of albuterol, Vtis and EVLW were higher in HFrEF vs control (998 ± 200 vs 884 ± 123 ml, p = 0.041; and 943 ± 202 vs 802 ± 133 ml, p = 0.015, respectively). Albuterol decreased Vtis and EVLW in HFrEF patients (-4.6 ± 7.8%, p = 0.010; -4.6 ± 8.8%, p = 0.018) and control subjects (-2.8 ± 4.9%, p = 0.029; -3.0 ± 5.7%, p = 0.045). There was an inverse relationship between pre-albuterol values and pre- to post-albuterol change for EVLW (r2 = -0.264, p = 0.015) and DmCO (r2 = -0.343, p = 0.004) in HFrEF only. CONCLUSION: Lung fluid is elevated in stable HFrEF patients relative to healthy subjects. Stimulation of ß2ARs may cause fluid removal in HFrEF, especially in patients with greater evidence of increased lung water at baseline.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/uso terapéutico , Albuterol/uso terapéutico , Agua Pulmonar Extravascular/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Administración por Inhalación , Anciano , Estudios de Casos y Controles , Femenino , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Capacidad de Difusión Pulmonar
8.
Respir Physiol Neurobiol ; 241: 45-52, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28013060

RESUMEN

Whether the specific blood transfer conductance for nitric oxide (NO) with hemoglobin (θNO) is finite or infinite is controversial but important in the calculation of alveolar capillary membrane conductance (DmCO) and pulmonary capillary blood volume (VC) from values of lung diffusing capacity for carbon monoxide (DLCO) and nitric oxide (DLNO). In this review, we discuss the background associated with θNO, explore the resulting values of DmCO and VC when applying either assumption, and investigate the mathematical underpinnings of DmCO and VC calculations. In general, both assumptions yield reasonable rest and exercise DmCO and VC values. However, the finite θNO assumption demonstrates increasing VC, but not DmCO, with submaximal exercise. At relatively high, but physiologic, DLNO/DLCO ratios both assumptions can result in asymptotic behavior for VC values, and under the finite θNO assumption, DmCO values. In conclusion, we feel that the assumptions associated with a finite θNO require further in vivo validation against an established method before widespread research and clinical use.


Asunto(s)
Hemoglobinas/metabolismo , Óxido Nítrico/sangre , Capacidad de Difusión Pulmonar , Animales , Humanos , Modelos Cardiovasculares
9.
Physiol Rep ; 4(13)2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27418546

RESUMEN

Heart failure (HF) is often associated with pulmonary congestion, reduced lung function, abnormal gas exchange, and dyspnea. We tested whether pulmonary congestion is associated with expanded vascular beds or an actual increase in extravascular lung water (EVLW) and how airway caliber is affected in stable HF Subsequently we assessed the influence of an inhaled short acting beta agonist (SABA). Thirty-one HF (7F; age, 62 ± 11 years; ht. 175 ± 9 cm; wt. 91 ± 17 kg; LVEF, 28 ± 15%) and 29 controls (11F; age; 56 ± 11 years; ht. 174 ± 8 cm; wt. 77 ± 14 kg) completed the study. Subjects performed PFTs and a chest computed tomography (CT) scan before and after SABA CT measures of attenuation, skew, and kurtosis were obtained from areas of lung tissue to assess EVLW Airway luminal areas and wall thicknesses were also measured : CT tissue density suggested increased EVLW in HF without differences in the ratio of airway wall thickness to luminal area or luminal area to TLC (skew: 2.85 ± 1.08 vs. 2.11 ± 0.79, P < 0.01; Kurtosis: 15.5 ± 9.5 vs. 9.3 ± 5.5 P < 0.01; control vs. HF). PFTs were decreased in HF at baseline (% predicted FVC:101 ± 15% vs. 83 ± 18%, P < 0.01;FEV1:103 ± 15% vs. 82 ± 19%, P < 0.01;FEF25-75: 118 ± 36% vs. 86 ± 36%, P < 0.01; control vs. HF). Airway luminal areas, but not CT measures, were correlated with PFTs at baseline. The SABA cleared EVLW and decreased airway wall thickness but did not change luminal area. Patients with HF had evidence of increased EVLW, but not an expanded bronchial circulation. Airway caliber was maintained relative to controls, despite reductions in lung volume and flow rates. SABA improved lung function, primarily by reducing EVLW.


Asunto(s)
Insuficiencia Cardíaca/complicaciones , Pulmón/fisiopatología , Edema Pulmonar/etiología , Administración por Inhalación , Agonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Anciano , Albuterol/administración & dosificación , Estudios de Casos y Controles , Enfermedad Crónica , Agua Pulmonar Extravascular/metabolismo , Femenino , Volumen Espiratorio Forzado , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/fisiopatología , Humanos , Pulmón/irrigación sanguínea , Pulmón/diagnóstico por imagen , Pulmón/efectos de los fármacos , Masculino , Flujo Espiratorio Medio Máximo , Persona de Mediana Edad , Edema Pulmonar/diagnóstico , Edema Pulmonar/tratamiento farmacológico , Edema Pulmonar/metabolismo , Edema Pulmonar/fisiopatología , Volumen Sistólico , Factores de Tiempo , Tomografía Computarizada Espiral , Función Ventricular Izquierda , Capacidad Vital
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA