Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mineral Petrol ; 115(1): 1-19, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33519095

RESUMEN

A multi-methodological study was conducted in order to provide further insight into the structural and compositional complexity of rare earth element (REE) fluorcarbonates, with particular attention to their correct assignment to a mineral species. Polycrystals from La Pita Mine, Municipality de Maripí, Boyacá Department, Colombia, show syntaxic intergrowth of parisite-(Ce) with röntgenite-(Ce) and a phase which is assigned to B 3 S 4 (i.e., bastnäsite-3-synchisite-4; still unnamed) fluorcarbonate. Transmission electron microscope (TEM) images reveal well-ordered stacking patterns of two monoclinic polytypes of parisite-(Ce) as well as heavily disordered layer sequences with varying lattice fringe spacings. The crystal structure refinement from single crystal X-ray diffraction data - impeded by twinning, complex stacking patterns, sequential and compositional faults - indicates that the dominant parisite-(Ce) polytype M 1 has space group Cc. Parisite-(Ce), the B 3 S 4 phase and röntgenite-(Ce) show different BSE intensities from high to low. Raman spectroscopic analyses of parisite-(Ce), the B 3 S 4 phase and röntgenite-(Ce) reveal different intensity ratios of the three symmetric CO3 stretching bands at around 1100 cm-1. We propose to non-destructively differentiate parisite-(Ce) and röntgenite-(Ce) by their 1092 cm-1 / 1081 cm-1 ν1(CO3) band height ratio.

2.
Sci Rep ; 10(1): 14676, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895406

RESUMEN

The actinide-containing mineral monazite-(Ce) is a common accessory rock component that bears petrogenetic information, is widely used in geochronology and thermochronology, and is considered as potential host material for immobilisation of radioactive waste. Natural samples of this mineral show merely moderate degrees of radiation damage, despite having sustained high self-irradiation induced by the decay of Th and U (for the sample studied herein 8.9 ± 0.3 × 1019 α/g). This is assigned to low damage-annealing temperature of monazite-(Ce) and "alpha-particle-assisted reconstitution". Here we show that the response of monazite-(Ce) to alpha radiation changes dramatically, depending on the damage state. Only in radiation-damaged monazite-(Ce), 4He ions cause gradual structural restoration. In contrast, its high-temperature annealed (i.e. well crystalline) analogue and synthetic CePO4 experience He-irradiation damage. Alpha-assisted annealing contributes to preventing irradiation-induced amorphisation ("metamictisation") of monazite-(Ce); however, this process is only significant above a certain damage level.

3.
Phys Chem Miner ; 45(9): 855-871, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30294066

RESUMEN

Lamellae of 1.5 µm thickness, prepared from well-crystallised monazite-(Ce) and zircon samples using the focused-ion-beam technique, were subjected to triple irradiation with 1 MeV Au+ ions (15.6% of the respective total fluence), 4 MeV Au2+ ions (21.9%) and 10 MeV Au3+ ions (62.5%). Total irradiation fluences were varied in the range 4.5 × 1012 - 1.2 × 1014 ions/cm2. The highest fluence resulted in amorphisation of both minerals; all other irradiations (i.e. up to 4.5 × 1013 ions/cm2) resulted in moderate to severe damage. Lamellae were subjected to Raman and laser-induced photoluminescence analysis, in order to provide a means of quantifying irradiation effects using these two micro-spectroscopy techniques. Based on extensive Monte Carlo calculations and subsequent defect-density estimates, irradiation-induced spectroscopic changes are compared with those of naturally self-irradiated samples. The finding that ion irradiation of monazite-(Ce) may cause severe damage or even amorphisation, is in apparent contrast to the general observation that naturally self-irradiated monazite-(Ce) does not become metamict (i.e. irradiation-amorphised), in spite of high self-irradiation doses. This is predominantly assigned to the continuous low-temperature damage annealing undergone by this mineral; other possible causes are discussed. According to cautious estimates, monazite-(Ce) samples of Mesoproterozoic to Cretaceous ages have stored only about 1% of the total damage experienced. In contrast, damage in ion-irradiated and naturally self-irradiated zircon is on the same order; reasons for the observed slight differences are discussed. We may assess that in zircon, alpha decays create significantly less than 103 Frenkel-type defect pairs per event, which is much lower than previous estimates. Amorphisation occurs at defect densities of about 0.10 dpa (displacements per lattice atom).

4.
Geostand Geoanal Res ; 42(4): 431-457, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30686958

RESUMEN

Here, we document a detailed characterisation of two zircon gemstones, GZ7 and GZ8. Both stones had the same mass at 19.2 carats (3.84 g) each; both came from placer deposits in the Ratnapura district, Sri Lanka. The U-Pb data are in both cases concordant within the uncertainties of decay constants and yield weighted mean 206Pb/238U ages (95% confidence uncertainty) of 530.26 Ma ± 0.05 Ma (GZ7) and 543.92 Ma ± 0.06 Ma (GZ8). Neither GZ7 nor GZ8 have been subjected to any gem enhancement by heating. Structure-related parameters correspond well with the calculated alpha doses of 1.48 × 1018 g-1 (GZ7) and 2.53 × 1018 g-1 (GZ8), respectively, and the (U-Th)/He ages of 438 Ma ± 3 Ma (2s) for GZ7 and 426 Ma ± 9 Ma (2s) for GZ8 are typical of unheated zircon from Sri Lanka. The mean U mass fractions are 680 µg g-1 (GZ7) and 1305 µg g-1 (GZ8). The two zircon samples are proposed as reference materials for SIMS (secondary ion mass spectrometry) U-Pb geochronology. In addition, GZ7 (Ti mass fractions 25.08 µg g-1 ± 0.18 µg g-1; 95% confidence uncertainty) may prove useful as reference material for Ti-in-zircon temperature estimates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA