Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2226, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278802

RESUMEN

In plants, B3 transcription factors play important roles in a variety of aspects of their growth and development. While the B3 transcription factor has been extensively identified and studied in numerous species, there is limited knowledge regarding its B3 superfamily in pepper. Through the utilization of genome-wide sequence analysis, we identified a total of 106 B3 genes from pepper (Capsicum annuum), they are categorized into four subfamilies: RAV, ARF, LAV, and REM. Chromosome distribution, genetic structure, motif, and cis-acting element of the pepper B3 protein were analyzed. Conserved gene structure and motifs outside the B3 domain provided strong evidence for phylogenetic relationships, allowing potential functions to be deduced by comparison with homologous genes from Arabidopsis. According to the high-throughput transcriptome sequencing analysis, expression patterns differ during different phases of fruit development in the majority of the 106 B3 pepper genes. By using qRT-PCR analysis, similar expression patterns in fruits from various time periods were discovered. In addition, further analysis of the CaRAV4 gene showed that its expression level decreased with fruit ripening and located in the nucleus. B3 transcription factors have been genome-wide characterized in a variety of crops, but the present study is the first genome-wide analysis of the B3 superfamily in pepper. More importantly, although B3 transcription factors play key regulatory roles in fruit development, it is uncertain whether B3 transcription factors are involved in the regulation of the fruit development and ripening process in pepper and their specific regulatory mechanisms because the molecular mechanisms of the process have not been fully explained. The results of the study provide a foundation and new insights into the potential regulatory functions and molecular mechanisms of B3 genes in the development and ripening process of pepper fruits, and provide a solid theoretical foundation for the enhancement of the quality of peppers and their selection and breeding of high-yield varieties.


Asunto(s)
Capsicum , Factores de Transcripción , Factores de Transcripción/metabolismo , Frutas/química , Capsicum/metabolismo , Filogenia , Fitomejoramiento , Regulación de la Expresión Génica de las Plantas
2.
ACS Appl Mater Interfaces ; 11(42): 39369-39375, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31603641

RESUMEN

Current-induced spin-orbit torques (SOTs) enable efficient electrical manipulation of the magnetization in heterostructures with a perpendicular magnetic anisotropy through the Rashba effect or spin-Hall effect. However, in conventional SOT-based heterostructures, an in-plane bias magnetic field along the current direction is required for the deterministic switching. Here, we report that the field-free SOT switching can be achieved by introducing a wedged oxide interface between a heavy metal and a ferromagnet. The results demonstrate that the field-free SOT switching is determined by a current-induced perpendicular effective field (Hzeff) originating from the interfacial Rashba effect due to the lateral structural symmetry-breaking introduced by the wedged oxide layer. Furthermore, we show that the sign and magnitude of Hzeff exhibit a significant dependence on the interfacial oxygen content, which can be controlled by the inserted oxide thickness. Our findings provide a deeper insight into the field-free SOT switching by the interfacial Rashba effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA