Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 135(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35118497

RESUMEN

The airway epithelium is subjected to insults such as cigarette smoke (CS), a primary cause of chronic obstructive pulmonary disease (COPD) and serves as an excellent model to study cell plasticity. Here, we show that both CS-exposed and COPD-patient derived epithelia (CHBE) display quantitative evidence of cellular plasticity, with loss of specialized apical features and a transcriptional profile suggestive of partial epithelial-to-mesenchymal transition (pEMT), albeit with distinct cell motion indicative of cellular unjamming. These injured/diseased cells have an increased fraction of polymerized actin, due to loss of the actin-severing protein cofilin-1. We observed that decreasing polymerized actin restores the jammed state in both CHBE and CS-exposed epithelia, indicating that the fraction of polymerized actin is critical in unjamming the epithelia. Our kinetic energy spectral analysis suggests that loss of cofilin-1 results in unjamming, similar to that seen with both CS exposure and in CHBE cells. The findings suggest that in response to chronic injury, although epithelial cells display evidence of pEMT, their movement is more consistent with cellular unjamming. Inhibitors of actin polymerization rectify the unjamming features of the monolayer. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Actinas , Enfermedad Pulmonar Obstructiva Crónica , Actinas/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humo/efectos adversos
2.
Langmuir ; 37(20): 6311-6321, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33983033

RESUMEN

We investigate the evaporation dynamics of a sessile droplet of ethanol-water binary mixtures of different compositions laden with alumina nanoparticles and compare with the no-loading condition at different substrate temperatures. Shadowgraphy and infrared imaging methods are used, and the experimental images are postprocessed using a machine learning technique. We found that the loading and no-loading cases display distinct wetting and contact angle dynamics. Although the wetting diameter of a droplet decreases monotonically in the absence of loading, the droplet with 0.6 wt % nanoparticle loading remains pinned for the majority of its lifetime. The temporal variation of the normalized droplet volume in the no-loading case has two distinct slopes, with ethanol and water phases dominating the early and late stages of evaporation, respectively. The normalized droplet volume with 0.6 wt % loading displays a nearly linear behavior because of the increase in the heat transfer rate. Our results from infrared imaging reveal that a nanofluid droplet displays far richer thermal patterns than a droplet without nanoparticle loading. In nanoparticle-laden droplets, the pinning effect, as well as the resulting thermo-capillary and thermo-solutal convection, causes more intense internal mixing and a faster evaporation rate. Finally, a theoretical model is also developed that satisfactorily predicts the evaporation dynamics of binary nanofluid droplets.

3.
BMC Pulm Med ; 20(1): 216, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32787821

RESUMEN

BACKGROUND: Taking into consideration a recent surge of a lung injury condition associated with electronic cigarette use, we devised an in vitro model of sub-chronic exposure of human bronchial epithelial cells (HBECs) in air-liquid interface, to determine deterioration of epithelial cell barrier from sub-chronic exposure to cigarette smoke (CS), e-cigarette aerosol (EC), and tobacco waterpipe exposures (TW). METHODS: Products analyzed include commercially available e-liquid, with 0% or 1.2% concentration of nicotine, tobacco blend (shisha), and reference-grade cigarette (3R4F). In one set of experiments, HBECs were exposed to EC (0 and 1.2%), CS or control air for 10 days using 1 cigarette/day. In the second set of experiments, exposure of pseudostratified primary epithelial tissue to TW or control air exposure was performed 1-h/day, every other day, until 3 exposures were performed. After 16-18 h of last exposure, we investigated barrier function/structural integrity of the epithelial monolayer with fluorescein isothiocyanate-dextran flux assay (FITC-Dextran), measurements of trans-electrical epithelial resistance (TEER), assessment of the percentage of moving cilia, cilia beat frequency (CBF), cell motion, and quantification of E-cadherin gene expression by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS: When compared to air control, CS increased fluorescence (FITC-Dextran assay) by 5.6 times, whereby CS and EC (1.2%) reduced TEER to 49 and 60% respectively. CS and EC (1.2%) exposure reduced CBF to 62 and 59%, and cilia moving to 47 and 52%, respectively, when compared to control air. CS and EC (1.2%) increased cell velocity compared to air control by 2.5 and 2.6 times, respectively. The expression of E-cadherin reduced to 39% of control air levels by CS exposure shows an insight into a plausible molecular mechanism. Altogether, EC (0%) and TW exposures resulted in more moderate decreases in epithelial integrity, while EC (1.2%) substantially decreased airway epithelial barrier function comparable with CS exposure. CONCLUSIONS: The results support a toxic effect of sub-chronic exposure to EC (1.2%) as evident by disruption of the bronchial epithelial cell barrier integrity, whereas further research is needed to address the molecular mechanism of this observation as well as TW and EC (0%) toxicity in chronic exposures.


Asunto(s)
Bronquios/efectos de los fármacos , Sistemas Electrónicos de Liberación de Nicotina , Células Epiteliales/efectos de los fármacos , Humo/efectos adversos , Pipas de Agua , Adulto , Aerosoles , Cilios/efectos de los fármacos , Femenino , Humanos , Pulmón , Masculino , Persona de Mediana Edad , Nicotina/farmacología , Técnicas de Cultivo de Órganos , Nicotiana
4.
Sci Rep ; 9(1): 7263, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086226

RESUMEN

Measuring the time evolution of response of Normal Human Bronchial Epithelial (NHBE) cells to aerosols is essential for understanding the pathogenesis of airway disease. This study introduces a novel Real-Time Examination of Cell Exposure (RTECE) system, which enables direct in situ assessment of functional responses of the cell culture during and following exposure to environmental agents. Included are cell morphology, migration, and specialised responses, such as ciliary beat frequency (CBF). Utilising annular nozzles for aerosol injection and installing windows above and below the culture, the cells can be illuminated and examined during exposure. The performance of RTECE is compared to that of the commercial Vitrocell by exposing NHBE cells to cigarette smoke. Both systems show the same mass deposition and similar trends in smoke-induced changes to monolayer permeability, CBF and transepithelial resistance. In situ measurements performed during and after two exposures to smoke show that the CBF decreases gradually during both exposures, recovering after the first, but decreasing sharply after the second. Using Particle image velocimetry, the cell motions are monitored for twelve hours. Exposure to smoke increases the spatially-averaged cell velocity by an order of magnitude. The relative motion between cells peaks shortly after each exposure, but remains elevated and even increases further several hours later.


Asunto(s)
Bronquios/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Bronquios/citología , Células Cultivadas , Cilios/efectos de los fármacos , Células Epiteliales/ultraestructura , Humanos , Microscopía , Humo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA