Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 3(5): e1603159, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28508079

RESUMEN

Wave-particle complementarity lies at the heart of quantum mechanics. To illustrate this mysterious feature, Wheeler proposed the delayed-choice experiment, where a quantum system manifests the wave- or particle-like attribute, depending on the experimental arrangement, which is made after the system has entered the interferometer. In recent quantum delayed-choice experiments, these two complementary behaviors were simultaneously observed with a quantum interferometer in a superposition of being closed and open. We suggest and implement a conceptually different quantum delayed-choice experiment by introducing a which-path detector (WPD) that can simultaneously record and neglect the system's path information, but where the interferometer itself is classical. Our experiment is realized with a superconducting circuit, where a cavity acts as the WPD for an interfering qubit. Using this setup, we implement the first twofold delayed-choice experiment, which demonstrates that the system's behavior depends not only on the measuring device's configuration that can be chosen even after the system has been detected but also on whether we a posteriori erase or mark the which-path information, the latter of which cannot be revealed by previous quantum delayed-choice experiments. Our results represent the first demonstration of both counterintuitive features with the same experimental setup, significantly extending the concept of quantum delayed-choice experiment.

2.
Phys Rev Lett ; 107(21): 217003, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-22181915

RESUMEN

We analyze the occurrence of the Berezinskii-Kosterlitz-Thouless (BKT) transition in thin films of NbN at various film thickness, by probing the effect of vortex fluctuations on the temperature dependence of the superfluid density below T(BKT) and of the resistivity above T(BKT). By direct comparison between the experimental data and the theory, we show the crucial role played by the vortex-core energy in determining the characteristic signatures of the BKT physics, and we estimate its dependence on the disorder level. Our work provides a paradigmatic example of BKT physics in a quasi-two-dimensional superconductor.

3.
Phys Rev Lett ; 106(4): 047001, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21405347

RESUMEN

We explore the role of phase fluctuations in a three-dimensional s-wave superconductor, NbN, as we approach the critical disorder for destruction of the superconducting state. Close to critical disorder, we observe a finite gap in the electronic spectrum which persists at temperatures well above T(c). The superfluid density is strongly suppressed at low temperatures and evolves towards a linear-T variation at higher temperatures. These observations provide strong evidence that phase fluctuations play a central role in the formation of a pseudogap state in a disordered s-wave superconductor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA