Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 8(3): e09075, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35284686

RESUMEN

The world has faced many disasters in recent years, but flood impacts have gained immense importance and attention due to their adverse effects. More than half of global flood destruction and damages occur in the Asia region, which causes losses of life, damage infrastructure, and creates panic conditions among the communities. To provide a better understanding of flood hazard management, flood vulnerability assessment is the primary objective. In this case, vulnerability is the central construct in flood analysis and assessment. Many researchers have defined different approaches and methods to understand vulnerability assessment and how geographic information systems assess the flood vulnerability and their associated risk. Geographic information systems track and predict the disaster trend and mitigate the risk and damages. This study systematically reviews the methodologies used to measure floods and their vulnerabilities by integrating geographic information system. Articles on flood vulnerability from 2010 to 2020 were selected and reviewed. Through the systematic review methodology of five research engines, the researchers discovered a difference in flood vulnerability assessment tools and techniques that can be bridged by integrating high-resolution data with a multidimensional vulnerability methodology. The study reviewed several vulnerability components and directly examined the shortcomings in flood vulnerability approaches at different levels. The research contributed that the indicator-based approach gives a better understanding of vulnerability assessment. The geographic information system provides an effective environment for mapping and precise analysis to mitigate the flood disaster.

2.
Heliyon ; 7(9): e07922, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34527824

RESUMEN

Despite the increasing presence of computational thinking (CT) in the mathematics context, the connection between CT and mathematics in a practical classroom context is an important area for further research. This study intends to investigate the impact of CT activities in the topic of number patterns on the learning performance of secondary students in Singapore. The Rasch model analysis was employed to assess differences of ability between students from the experimental group and control group. 106 Secondary One students (age 13 years old) from a secondary school in Singapore took part in this study. A quasi-experimental non-equivalent groups design was utilized where 70 students were assigned into the experimental group, and 36 students were assigned into the control group. The experimental group was given intervention with CT-infused activities both on- and off-computer, while the control group received no such intervention. Both groups were administered the pretest before the intervention and the posttest after the intervention. The data gathered were analyzed using the partial credit version of the Rasch model. Analysis of pretest and posttest results revealed that the performance of the experimental group was similar to the control group. The findings did not support the hypothesis that integrating CT in lessons can result in improved mathematics learning. However, the drastic improvement was observed in individual students from the experimental group, while there is no obvious or extreme improvement for the students from the control group. This study provides some new empirical evidence and practical contributions to the infusion of CT practices in the mathematics classroom.

3.
PLoS One ; 11(11): e0163846, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812091

RESUMEN

Based on a synthesis of literature, earlier studies, analyses and observations on high school students, this study developed an initial framework for assessing students' statistical reasoning about descriptive statistics. Framework descriptors were established across five levels of statistical reasoning and four key constructs. The former consisted of idiosyncratic reasoning, verbal reasoning, transitional reasoning, procedural reasoning, and integrated process reasoning. The latter include describing data, organizing and reducing data, representing data, and analyzing and interpreting data. In contrast to earlier studies, this initial framework formulated a complete and coherent statistical reasoning framework. A statistical reasoning assessment tool was then constructed from this initial framework. The tool was administered to 10 tenth-grade students in a task-based interview. The initial framework was refined, and the statistical reasoning assessment tool was revised. The ten students then participated in the second task-based interview, and the data obtained were used to validate the framework. The findings showed that the students' statistical reasoning levels were consistent across the four constructs, and this result confirmed the framework's cohesion. Developed to contribute to statistics education, this newly developed statistical reasoning framework provides a guide for planning learning goals and designing instruction and assessments.


Asunto(s)
Evaluación Educacional/métodos , Estadística como Asunto , Estudiantes , Pensamiento , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA