RESUMEN
Introduction In 2020, nations hastened to contain an emerging COVID-19 pandemic by deploying diverse public health approaches, but conclusive appraisals of the efficacy of these approaches are elusive in most cases. One of the medicines deployed, ivermectin (IVM), a macrocyclic lactone having biochemical activity against SARS-CoV-2 through competitive binding to its spike protein, has yielded mixed results in randomized clinical trials (RCTs) for COVID-19 treatments. In Peru, an opportunity to track the efficacy of IVM with a close consideration of confounding factors was provided through data for excess deaths as correlated with IVM use in 2020, under semi-autonomous policies in its 25 states. Methods To evaluate possible IVM treatment effects, excess deaths as determined from Peruvian national health data were analyzed by state for ages ≥60 in Peru's 25 states. These data were compared with monthly summary data for excess deaths in Peru for the period 2020-2021 as published by the WHO in 2022. To identify potential confounding factors, Google mobility data, population densities, SARS-CoV-2 genetic variations, and seropositivity rates were also examined. Results Reductions in excess deaths over a period of 30 days after peak deaths averaged 74% in the 10 states with the most intensive IVM use. As determined across all 25 states, these reductions in excess deaths correlated closely with the extent of IVM use (p<0.002). During four months of IVM use in 2020, before a new president of Peru restricted its use, there was a 14-fold reduction in nationwide excess deaths and then a 13-fold increase in the two months following the restriction of IVM use. Notably, these trends in nationwide excess deaths align with WHO summary data for the same period in Peru. Conclusions The natural experiment that was put into motion with the authorization of IVM use for COVID-19 in Peru in May 2020, as analyzed using data on excess deaths by locality and by state from Peruvian national health sources, resulted in strong evidence for the drug's effectiveness. Several potential confounding factors, including effects of a social isolation mandate imposed in May 2020, variations in the genetic makeup of the SARS-CoV-2 virus, and differences in seropositivity rates and population densities across the 25 states, were considered but did not appear to have significantly influenced these outcomes.