Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 37(10): 2931-2943, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32497204

RESUMEN

Ancient biomolecule analyses are proving increasingly useful in the study of evolutionary patterns, including extinct organisms. Proteomic sequencing techniques complement genomic approaches, having the potential to examine lineages further back in time than achievable using ancient DNA, given the less stringent preservation requirements. In this study, we demonstrate the ability to use collagen sequence analyses via proteomics to assist species delimitation as a foundation for informing evolutionary patterns. We uncover biogeographic information of an enigmatic and recently extinct lineage of Nesophontes across their range on the Caribbean islands. First, evolutionary relationships reconstructed from collagen sequences reaffirm the affinity of Nesophontes and Solenodon as sister taxa within Solenodonota. This relationship helps lay the foundation for testing geographical isolation hypotheses across islands within the Greater Antilles, including movement from Cuba toward Hispaniola. Second, our results are consistent with Cuba having just two species of Nesophontes (N. micrus and N. major) that exhibit intrapopulation morphological variation. Finally, analysis of the recently described species from the Cayman Islands (N. hemicingulus) indicates that it is a closer relative to N. major rather than N. micrus as previously speculated. This proteomic sequencing improves our understanding of the origin, evolution, and distribution of this extinct mammal lineage, particularly with respect to the approximate timing of speciation. Such knowledge is vital for this biodiversity hotspot, where the magnitude of recent extinctions may obscure true estimates of species richness in the past.


Asunto(s)
Evolución Biológica , Colágeno/química , Musarañas/genética , Animales , Femenino , Masculino , Mandíbula/anatomía & histología , Filogeografía , Análisis de Secuencia de Proteína , Caracteres Sexuales , Musarañas/anatomía & histología , Indias Occidentales
2.
PLoS One ; 11(3): e0150650, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26938469

RESUMEN

Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N) and ratio of carbon to nitrogen (C:N). Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification) as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands), chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six (14)C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae), recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP). All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated (14)C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 1(4)C analysis.


Asunto(s)
Huesos/química , Colágeno/química , Espectrometría de Masas/métodos , Datación Radiométrica/métodos , Animales , Arqueología/métodos , Biodiversidad , Calibración , Carbono/química , Radioisótopos de Carbono/análisis , Fósiles , Humanos , Nitrógeno/química , Paleontología , Péptidos/química , Roedores , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Indias Occidentales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA