Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257479

RESUMEN

Effective damage identification is paramount to evaluating safety conditions and preventing catastrophic failures of concrete structures. Although various methods have been introduced in the literature, developing robust and reliable structural health monitoring (SHM) procedures remains an open research challenge. This study proposes a new approach utilizing a 1-D convolution neural network to identify the formation of cracks from the raw electromechanical impedance (EMI) signature of externally bonded piezoelectric lead zirconate titanate (PZT) transducers. Externally bonded PZT transducers were used to determine the EMI signature of fiber-reinforced concrete specimens subjected to monotonous and repeatable compression loading. A leave-one-specimen-out cross-validation scenario was adopted for the proposed SHM approach for a stricter and more realistic validation procedure. The experimental study and the obtained results clearly demonstrate the capacity of the introduced approach to provide autonomous and reliable damage identification in a PZT-enabled SHM system, with a mean accuracy of 95.24% and a standard deviation of 5.64%.

2.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904609

RESUMEN

The current paper presents the results of an experimental study of carbon nano-, micro-, and hybrid-modified cementitious mortar to evaluate mechanical performance, energy absorption, electrical conductivity, and piezoresistive sensibility. Three amounts of single-walled carbon nanotubes (SWCNTs), namely 0.05 wt.%, 0.1 wt.%, 0.2 wt.%, and 0.3 wt.% of the cement mass, were used to prepare nano-modified cement-based specimens. In the microscale modification, 0.05 wt.%, 0.5 wt.%, 1.0 wt.% carbon fibers (CFs) were incorporated in the matrix. The hybrid-modified cementitious specimens were enhanced by adding optimized amounts of CFs and SWCNTs. The smartness of modified mortars, indicated by their piezoresistive behavior, was investigated by measuring the changes in electrical resistivity. The effective parameters that enhance the composites' mechanical and electrical performance are the different concentrations of reinforcement and the synergistic effect between the types of reinforcement used in the hybrid structure. Results reveal that all the strengthening types improved flexural strength, toughness, and electrical conductivity by about an order of magnitude compared to the reference specimens. Specifically, the hybrid-modified mortars presented a marginal reduction of 1.5% in compressive strength and an increase in flexural strength of 21%. The hybrid-modified mortar absorbed the most energy, 1509%, 921%, and 544% more than the reference mortar, nano-modified mortar, and micro-modified mortar, respectively. The change rate of impedance, capacitance, and resistivity in piezoresistive 28-day hybrid mortars improved the tree ratios by 289%, 324%, and 576%, respectively, for nano-modified mortars and by 64%, 93%, and 234%, respectively, for micro-modified mortars.

3.
Polymers (Basel) ; 15(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36771774

RESUMEN

Traditional methods for estimating structural deterioration are generally costly and inefficient. Recent studies have demonstrated that implementing a network of piezoelectric transducers mounted to critical regions of concrete structural members substantially increases the efficacy of the structural health monitoring (SHM) method. This study uses a recently developed electro-mechanical-admittance (EMA)-based SHM system for real-time damage diagnosis of carbon FRP (C-FRP) ropes installed as shear composite reinforcement in RC deep beams. The applied SHM technique uses the frequency response measurements of a network of piezoelectric lead zirconate titanate (PZT) patches. The proposed strengthening methods using C-FRP ropes as ETS and NSM shear reinforcement and the applied anchorage techniques significantly enhanced the strength and the overall performance of the examined beams. The retrofitted beams exhibited increased shear capacity and improved post-peak response with substantial ductility compared with the brittle failure of the non-strengthened specimens. The health condition and the potential debonding failure of the applied composite fiber material were also examined and quantified using the proposed SHM technique. Damage quantification of C-FRP ropes is achieved by comparing and assessing the values of several statistical damage indices. The experimental results demonstrated that the proposed monitoring system successfully diagnosed the region where the damage occurred by providing early warning of the forthcoming critical shear cracking of concrete and C-FRP rope debonding failures. Furthermore, the internal PZT transducers showed sound indications of the C-FRP rope's health condition, demonstrating a direct correlation with the mechanical performance of the fibers.

4.
Polymers (Basel) ; 15(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679160

RESUMEN

The favorable contribution of externally bonded fiber-reinforced polymer (EB-FRP) sheets to the shear strengthening of reinforced concrete (RC) beams is widely acknowledged. Nonetheless, the premature debonding of EB-FRP materials remains a limitation for widespread on-site application. Once debonding appears, it is highly likely that brittle failure will occur in the strengthened RC structural member; therefore, it is essential to be alerted of the debonding incident immediately and to intervene. This may not be always possible, particularly if the EB-FRP strengthened RC member is located in an inaccessible area for fast inspection, such as bridge piers. The ability to identify debonding immediately via remote control would contribute to the safer application of the technique by eliminating the negative outcomes of debonding. The current investigation involves the detection of EB-FRP sheet debonding using a remotely controlled electromechanical admittance (EMA)-based structural health monitoring (SHM) system that utilizes piezoelectric lead zirconate titanate (PZT) sensors. An experimental investigation on RC T-beams strengthened for shear with EB-FRP sheets has been performed. The PZT sensors are installed at various locations on the surface of the EB-FRP sheets to evaluate the SHM system's ability to detect debonding. Additionally, strain gauges were attached on the surface of the EB-FRP sheets near the PZT sensors to monitor the deformation of the FRP and draw useful conclusions through comparison of the results to the wave-based data provided by the PZT sensors. The experimental results indicate that although EB-FRP sheets increase the shear resistance of the RC T-beams, premature failure occurs due to sheet debonding. The applied SHM system can sufficiently identify the debonding in real-time and appears to be feasible for on-site applications.

5.
Sensors (Basel) ; 22(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36365992

RESUMEN

Recent research has indicated that the implantation of a network of piezoelectric transducer patches in element regions of potential damage development, such as the beam-column joint (BCJ) area, substantially increases the efficacy and accuracy of the structural health monitoring (SHM) methods to identify damage level, providing a reliable diagnosis. The use of piezoelectric lead zirconate titanate (PZT) transducers for the examination of the efficiency of an innovative strengthening technique of reinforced concrete (RC) columns and BCJs is presented and commented on. Two real-scale RC BCJ subassemblages were constructed for this investigation. The columns and the joint panel of the second subassemblage were externally strengthened with carbon fiber-reinforced polymer (C-FRP) ropes. To examine the efficiency of this strengthening technique we used the following transducers: (a) PZT sensors on the ropes and the concrete; (b) tSring linear variable displacement transducers (SLVDTs), diagonally installed on the BCJ, to measure the shear deformations of the BCJ panel; (c) Strain gauges on the internal steel bars. From the experimental results, it became apparent that the PZT transducers successfully diagnosed the loading step at which the primary damage occurred in the first BCJ subassemblage and the damage state of the strengthened BCJ during the loading procedure. Further, data acquired from the diagonal SLVDTs and the strain gauges provided insight into the damage state of the two tested specimens at each step of the loading procedure and confirmed the diagnosis provided by the PZT transducers. Furthermore, data acquired by the PZT transducers, SLVDTs and strain gauges proved the effectiveness of the applied strengthening technique with C-FRP ropes externally mounted on the column and the conjunction area of the examined BCJ subassemblages.


Asunto(s)
Transductores , Circonio , Circonio/química , Titanio/química , Polímeros/química
6.
Materials (Basel) ; 14(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34300808

RESUMEN

Torsional behavior and analysis of steel fiber reinforced concrete (SFRC) beams is investigated in this paper. The purpose of this study is twofold; to examine the torsion strength models for SFRC beams available in the literature and to address properly verified design formulations for SFRC beams under torsion. A total of 210 SFRC beams tested under torsion from 16 different experimental investigations around the world are compiled. The few strength models available from the literature are adapted herein and used to calculate the torsional strength of the beams. The predicted strength is compared with the experimental values measured by the performed torsional tests and these comparisons showed a room for improvement. First, a proposed model is based on optimizing the constants of the existing formulations using multi-linear regression. Further, a second model is proposed, which is based on modifying the American Concrete Institute (ACI) design code for reinforced concrete (RC) members to include the effect of steel fibers on the torsional capacity of SFRC beams. Applications of the proposed models showed better compliance and consistency with the experimental results compared to the available design models providing safe and verified predictions. Further, the second model implements the ACI code for RC using a simple and easy-to-apply formulation.

7.
Sensors (Basel) ; 21(3)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498337

RESUMEN

The utilization and effectiveness of a custom-made, portable and low-cost structural health monitoring (SHM) system that implements the PZT-based electro-mechanical admittance (EMA) methodology for the detection and evaluation of the damage of flexural reinforced concrete (RC) beams is presented. Tests of large-scale beams under monotonic and cyclic reversal-imposed deformations have been carried out using an integrated wireless impedance/admittance monitoring system (WiAMS) that employs the voltage measurements of PZT transducers. Small-sized PZT patches that have been epoxy-bonded on the steel bars surface and on the external concrete face of the beams are utilized to diagnose damages caused by steel yielding and concrete cracking. Excitations and simultaneous measurements of the voltage signal responses of the PZT transducers have been carried out at different levels of the applied load during the tests using the developed SHM devices, which are remotely controlled by a terminal emulator. Each PZT output voltage versus frequency response is transferred wireless and in real-time. Statistical index values are calculated based on the signals of the PZT transducers to represent the differences between their baseline response at the healthy state of the beam and their response at each loading/damage level. Finite Element Modeling (FEM) simulation of the tested beams has also been performed to acquire numerical results concerning the internal cracks, the steel strains and the energy dissipation and instability parameters. FEM analyses are used to verify the experimental results and to support the visual observations for a more precise damage evaluation. Findings of this study indicate that the proposed SHM system with the implementation of two different PZT transducer settings can be effectively utilized for the assessment of structural damage caused by concrete cracking and steel yielding in flexural beams under monotonic and cyclic loading.

8.
Materials (Basel) ; 13(12)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545721

RESUMEN

This paper investigates the ability of steel fibers to enhance the short-term behavior and flexural performance of realistic steel fiber-reinforced concrete (SFRC) structural members with steel reinforcing bars and stirrups using nonlinear 3D finite element (FE) analysis. Test results of 17 large-scale beam specimens tested under monotonic flexural four-point loading from the literature are used as an experimental database to validate the developed nonlinear 3D FE analysis and to study the contributions of steel fibers on the initial stiffness, strength, deformation capacity, cracking behavior, and residual stress. The examined SFRC beams include various ratios of longitudinal reinforcement (0.3%, 0.6%, and 1.0%) and steel fiber volume fractions (from 0.3% to 1.5%). The proposed FE analysis employs the nonlinearities of the materials with new and established constitutive relationships for the SFRC under compression and tension based on experimental data. Especially for the tensional response of SFRC, an efficient smeared crack approach is proposed that utilizes the fracture properties of the material utilizing special stress versus crack width relations with tension softening for the post-cracking SFRC tensile response instead of stress-strain laws. The post-cracking tensile behavior of the SFRC near the reinforcing bars is modeled by a tension stiffening model that considers the SFRC fracture properties, the steel fiber interaction in cracked concrete, and the bond behavior of steel bars. The model validation is carried out comparing the computed key overall and local responses and responses measured in the tests. Extensive comparisons between numerical and experimental results reveal that a reliable and computationally-efficient model captures well the key aspects of the response, such as the SFRC tension softening, the tension stiffening effect, the bending moment-curvature envelope, and the favorable contribution of the steel fibers on the residual response. The results of this study reveal the favorable influence of steel fibers on the flexural behavior, the cracking performance, and the post-cracking residual stress.

9.
Materials (Basel) ; 12(9)2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035704

RESUMEN

Reinforced concrete (RC) beams under cyclic loading usually suffer from reduced aggregate interlock and eventually weakened concrete compression zone due to severe cracking and the brittle nature of compressive failure. On the other hand, the addition of steel fibers can reduce and delay cracking and increase the flexural/shear capacity and the ductility of RC beams. The influence of steel fibers on the response of RC beams with conventional steel reinforcements subjected to reversal loading by a four-point bending scheme was experimentally investigated. Three slender beams, each 2.5 m long with a rectangular cross-section, were constructed and tested for the purposes of this investigation; two beams using steel fibrous reinforced concrete and one with plain reinforced concrete as the reference specimen. Hook-ended steel fibers, each with a length-to-diameter ratio equal to 44 and two different volumetric proportions (1% and 3%), were added to the steel fiber reinforced concrete (SFRC) beams. Accompanying, compression, and splitting tests were also carried out to evaluate the compressive and tensile splitting strength of the used fibrous concrete mixtures. Test results concerning the hysteretic response based on the energy dissipation capabilities (also in terms of equivalent viscous damping), the damage indices, the cracking performance, and the failure of the examined beams were presented and discussed. Test results indicated that the SFRC beam demonstrated improved overall hysteretic response, increased absorbed energy capacities, enhanced cracking patterns, and altered failure character from concrete crushing to a ductile flexural one compared to the RC beam. The non-fibrous reference specimen demonstrated shear diagonal cracking failing in a brittle manner, whereas the SFRC beam with 1% steel fibers failed after concrete spalling with satisfactory ductility. The SFRC beam with 3% steel fibers exhibited an improved cyclic response, achieving a pronounced flexural behavior with significant ductility due to the ability of the fibers to transfer the developed tensile stresses across crack surfaces, preventing inclined shear cracks or concrete spalling. A report of an experimental database consisting of 39 beam specimens tested under cyclic loading was also presented in order to establish the effectiveness of steel fibers, examine the fiber content efficiency and clarify their role on the hysteretic response and the failure mode of RC structural members.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA