Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
Insects ; 12(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208936

RESUMEN

Ligusticum sinense Oliv. cv. is a species of Umbelliferae (Apiaceae), a large plant family in the order Apiales. In this study, L. sinense hexane extract nanoemulsion gel (LHE-NEG) was investigated for mosquito repellency and compared to the standard chemical, N,N-diethyl-3-methylbenzamide (DEET), with the goal of developing a natural alternative to synthetic repellents in protecting against mosquito vectors. The results demonstrated that LHE-NEG afforded remarkable repellency against Aedes aegypti, Anopheles minimus, and Culex quinquefasciatus, with median protection times (MPTs) of 5.5 (4.5-6.0), 11.5 (8.5-12.5), and 11.25 (8.5-12.5) h, respectively, which was comparable to those of DEET-nanoemulsion gel (DEET-NEG: 8.5 (7.0-9.0), 12.0 (10.0-12.5), and 12.5 (10.0-13.5) h, respectively). Evaluation of skin irritation in 30 human volunteers revealed no potential irritant from LHE-NEG. The physical and biological stability of LHE-NEG were determined after being kept under heating/cooling cycle conditions. The stored samples of LHE-NEG exhibited some changes in appearance and differing degrees of repellency between those kept for 3 and 6 heating/cooling cycles, thus providing slightly shorter MPTs of 4.25 (4.0-4.5) and 3.25 (2.5-3.5) h, respectively, when compared to those of 5.0 (4.5-6.0) h in fresh preparation. These findings encourage commercially developed LHE-based products as an alternative to conventional synthetic repellents in preventing mosquito bites and helping to interrupt mosquito-borne disease transmission.

2.
J Med Entomol ; 58(3): 1298-1315, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33570125

RESUMEN

Previous work presented the profound antimosquito potential of Petroselinum crispum essential oil (PEO) against either the pyrethroid-susceptible or resistant strains of Aedes aegypti. This plant oil also inhibited the activity of acetylcholinesterase and mixed-function oxidases significantly, thus suggesting its potential as a synergist for improving mosquitocidal efficacy of insecticidal formulations. This study investigated the chemical composition, larvicidal activity, and potential synergism with synthetic insecticides of PEO and its main compounds for the purpose of interacting with insecticide resistance in mosquito vectors. The chemical profile of PEO, obtained by GC-MS analysis, showed a total of 17 bioactive compounds, accounting for 99.09% of the whole oil, with the most dominant constituents being thymol (74.57%), p-cymene (10.73%), and γ-terpinene (8.34%). All PEO constituents exhibited promising larvicidal effects, with LC50 values ranging from 19.47 to 59.75 ppm against Ae. aegypti, in both the pyrethroid-susceptible and resistant strains. Furthermore, combination-based bioassays revealed that PEO, thymol, p-cymene, and γ-terpinene enhanced the efficacy of temephos and deltamethrin significantly. The most effective synergist with temephos was PEO, which reduced LC50 values to 2.73, 4.94, and 3.28 ppb against MCM-S, PMD-R, and UPK-R, respectively, with synergism ratio (SR) values of 1.33, 1.38, and 2.12, respectively. The best synergist with deltamethrin also was PEO, which reduced LC50 values against MCM-S, PMD-R, and UPK-R to 0.008, 0.18, and 2.49 ppb, respectively, with SR values of 21.25, 9.00, and 4.06, respectively. This research promoted the potential for using essential oil and its principal constituents as not only alternative larvicides, but also attractive synergists for enhancing efficacy of existing conventional insecticides.


Asunto(s)
Aedes , Insecticidas , Control de Mosquitos , Nitrilos , Aceites Volátiles , Petroselinum/química , Piretrinas , Temefós , Aedes/crecimiento & desarrollo , Animales , Larva/crecimiento & desarrollo
3.
Insects ; 10(1)2018 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-30586929

RESUMEN

In ongoing screening research for edible plants, Petroselinum crispum essential oil was considered as a potential bioinsecticide with proven antimosquito activity against both the pyrethroid susceptible and resistant strains of Aedes aegypti. Due to the comparative mosquitocidal efficacy on these mosquitoes, this plant essential oil is promoted as an attractive candidate for further study in monitoring resistance of mosquito vectors. Therefore, the aim of this study was to evaluate the impact of P. crispum essential oil on the biochemical characteristics of the target mosquito larvae of Ae. aegypti, by determining quantitative changes of key enzymes responsible for xenobiotic detoxification, including glutathione-S-transferases (GSTs), α- and ß-esterases (α-/ß-ESTs), acetylcholinesterase (AChE), acid and alkaline phosphatases (ACP and ALP) and mixed-function oxidases (MFO). Three populations of Ae. aegypti, comprising the pyrethroid susceptible Muang Chiang Mai-susceptible (MCM-S) strain and the pyrethroid resistant Pang Mai Dang-resistant (PMD-R) and Upakut-resistant (UPK-R) strains, were used as test organisms. Biochemical study of Ae. aegypti larvae prior to treatment with P. crispum essential oil revealed that apart from AChE, the baseline activity of most defensive enzymes, such as GSTs, α-/ß-ESTs, ACP, ALP and MFO, in resistant UPK-R or PMD-R, was higher than that determined in susceptible MCM-S. However, after 24-h exposure to P. crispum essential oil, the pyrethroid susceptible and resistant Ae. aegypti showed similarity in biochemical features, with alterations of enzyme activity in the treated larvae, as compared to the controls. An increase in the activity levels of GSTs, α-/ß-ESTs, ACP and ALP was recorded in all strains of P. crispum oil-treated Ae. aegypti larvae, whereas MFO and AChE activity in these mosquitoes was decreased. The recognizable larvicidal capability on pyrethroid resistant Ae. aegypti, and the inhibitory effect on AChE and MFO, emphasized the potential of P. crispum essential oil as an attractive alternative application for management of mosquito resistance in current and future control programs.

4.
Parasitol Res ; 116(12): 3349-3359, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29082435

RESUMEN

There was recently an outbreak of malaria in Ubon Ratchathani Province, northeastern Thailand. In the absence of information on malaria vector transmission dynamics, this study aimed to identify the anopheline vectors and their role in malaria transmission. Adult female Anopheles mosquitoes were collected monthly by human-landing catch in Na Chaluai District of Ubon Ratchathani Province during January 2014-December 2015. Field-captured mosquitoes were identified to species using morphology-based keys and molecular assays (allele-specific polymerase chain reaction, AS-PCR), and analysed for the presence of Plasmodium falciparum and Plasmodium vivax using an enzyme-linked immunosorbent assay (ELISA) for the detection of circumsporozoite proteins (CSP). A total of 1,229 Anopheles females belonging to 13 species were collected. Four anopheline taxa were most abundant: Members of the Anopheles barbirostris complex, comprising 38% of the specimens, species of the Anopheles hyrcanus group (18%), Anopheles nivipes (17%) and Anopheles philippinensis (12%). The other nine species comprised 15% of the collections. Plasmodium infections were detected in two of 668 pooled samples of heads/thoraces, Anopheles dirus (1/29) and An. philippinensis (1/97). The An. dirus pool had a mixed infection of P. vivax-210 and P. vivax-247, whereas the An. philippinensis pool was positive only for the latter protein variant. Both positive ELISA samples were confirmed by nested PCR. This study is the first to incriminate An. dirus and An. philippinensis as natural malaria vectors in the area where the outbreak occurred. This information can assist in designing and implementing a more effective malaria control programme in the province.


Asunto(s)
Anopheles/parasitología , Plasmodium vivax , Animales , Anopheles/clasificación , Enfermedades Endémicas , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Insectos Vectores/parasitología , Malaria Vivax/epidemiología , Malaria Vivax/transmisión , Plasmodium falciparum , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/metabolismo , Tailandia/epidemiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-29644838

RESUMEN

Dermal myiasis due to the flesh fly has not been commonly reported in Thailand. A 64-year-old man came to the hospital with a 6-month history of a black tumor on the dorsum of the right great toe. The tumor was biopsied and determined to be a malignant melanoma. Second instar larvae were also seen in the wound and one larva was reared until the adult stage wherein it was identified as the flesh fly, Parasarcophaga (Liosarcophaga) dux (Thomson, 1869) (Diptera: Sarcophagidae). This case shows myiasis due to synanthropic sarcophagid flies occurs in Thailand and can occur in a malignant melanoma.


Asunto(s)
Melanoma/complicaciones , Miasis/patología , Sarcofágidos , Neoplasias Cutáneas/complicaciones , Animales , Humanos , Masculino , Persona de Mediana Edad , Miasis/epidemiología , Tailandia/epidemiología , Melanoma Cutáneo Maligno
6.
Parasit Vectors ; 9(1): 373, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27357395

RESUMEN

BACKGROUND: Angelica sinensis (Oliv.) hexane extract (AHE) has been reported as a proven and impressive repellent against laboratory-reared female Aedes aegypti mosquitoes. With the aim of promoting products of plant origin as a viable alternative to conventional synthetic substances, this study was designed to transform AHE-based repellents for exploitable commercial production by enhancing their efficacy and assessing their physical and biological stability as well as repellency against mosquitoes under laboratory and field conditions. METHODS: The chemical profile of AHE was analyzed by qualitative gas chromatography-mass spectrometry (GC-MS) technique. AHE was supplemented with vanillin, as a fixative, and then investigated for repellency and comparison to the standard synthetic repellent, DEET, under both laboratory and field conditions. Determination of physical and biological stability as a repellent was carried out after keeping AHE samples under varying temperatures and for different storage times. RESULTS: GC-MS analysis revealed that AHE contained at least 21 phytochemical compounds, constituting 95.74 % of the total content, with the major constituent of 3-N-butylphthalide (66.67 %). Ethanolic formulations of AHE and DEET showed improvement of repellency in a dose-dependent manner when vanillin was added in laboratory assessment. While 5-25 % AHE alone provided median complete-protection times of 2.0-6.5 h against Ae. aegypti, these times were increased to 4.0-8.5 h with a combination of AHE and 5 % vanillin (AHEv). Protection times against Ae. aegypti were extended from 2.25 to 7.25 h to 4.25-8.25 h when 5-25 % DEET was combined with 5 % vanillin (DEETv). In determining stability, all stored AHE samples exhibited similar characteristics such as liquid phases with aromatic odor comparable to those of fresh preparations. Furthermore, repellent activity of stored AHE samples lasted for at least six months, with varied efficacy (4.5-10.0 h) against Ae. aegypti. Field trials revealed strong repellency from both 25 % AHEv and 25 % DEETv, with complete protection (100 %) against a wide range of local mosquito populations. A total of 5,718 adult female mosquitoes, with the most predominant being Culex quinquefasciatus (41.47 %), Armigeres subalbatus (41.13 %), and Culex vishnui (10.53 %), was collected during field applications. No local skin reaction or other allergic responses was observed during both laboratory and field study periods. CONCLUSIONS: Angelica sinensis proved to have not only impressive repellency against both laboratory Ae. aegypti and a wide range of natural mosquito populations, but also relative stability in physical and biological performance.


Asunto(s)
Angelica sinensis/química , Culicidae/efectos de los fármacos , Repelentes de Insectos/farmacología , Animales , Benzofuranos/química , Femenino , Humanos , Repelentes de Insectos/química , Ácido Linoleico/química , Masculino , Estructura Molecular , Anhídridos Ftálicos/química , Extractos Vegetales/farmacología , Tailandia
7.
Malar J ; 14: 307, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26249666

RESUMEN

BACKGROUND: For personal protection against mosquito bites, user-friendly natural repellents, particularly from plant origin, are considered as a potential alternative to applications currently based on synthetics such as DEET, the standard chemical repellent. This study was carried out in Thailand to evaluate the repellency of Ligusticum sinense hexane extract (LHE) against laboratory Anopheles minimus and Aedes aegypti, the primary vectors of malaria and dengue fever, respectively. METHODS: Repellent testing of 25% LHE against the two target mosquitoes; An. minimus and Ae. aegypti, was performed and compared to the standard repellent, DEET, with the assistance of six human volunteers of either sex under laboratory conditions. The physical and biological stability of LHE also was determined after keeping it in conditions that varied in temperature and storage time. Finally, LHE was analysed chemically using the qualitative GC/MS technique in order to demonstrate a profile of chemical constituents. RESULTS: Ethanol preparations of LHE, with and without 5% vanillin, demonstrated a remarkably effective performance when compared to DEET in repelling both An. minimus and Ae. aegypti. While 25% LHE alone provided median complete-protection times against An. minimus and Ae. aegypti of 11.5 (9.0-14.0) hours and 6.5 (5.5-9.5) hours, respectively, the addition of 5% vanillin increased those times to 12.5 (9.0-16.0) hours and 11.0 (7.0-13.5) hours, respectively. Correspondingly, vanillin added to 25% DEET also extended the protection times from 11.5 (10.5-15.0) hours to 14.25 (11.0-18.0) hours and 8.0 (5.0-9.5) hours to 8.75 (7.5-11.0) hours against An. minimus and Ae. aegypti, respectively. No local skin reaction such as rash, swelling or irritation was observed during the study period. Although LHE samples kept at ambient temperature (21-35°C), and 45°C for 1, 2 and 3 months, demonstrated similar physical characteristics, such as similar viscosity and a pleasant odour, to those that were fresh and stored at 4°C, their colour changed from light- to dark-brown. Interestingly, repellency against Ae. aegypti of stored LHE was presented for a period of at least 3 months, with insignificantly varied efficacy. Chemical analysis revealed that the main components of LHE were 3-N-butylphthalide (31.46%), 2, 5-dimethylpyridine (21.94%) and linoleic acid (16.41%), constituting 69.81% of all the extract composition. CONCLUSIONS: LHE with proven repellent efficacy, no side effects on the skin, and a rather stable state when kept in varied conditions is considered to be a potential candidate for developing a new natural alternative to DEET, or an additional weapon for integrated vector control when used together with other chemicals/measures.


Asunto(s)
Aedes/efectos de los fármacos , Anopheles/efectos de los fármacos , Repelentes de Insectos/farmacología , Ligusticum/química , Control de Mosquitos/métodos , Adulto , Animales , Femenino , Humanos , Masculino , Extractos Vegetales/farmacología , Especificidad de la Especie , Adulto Joven
8.
Parasitol Res ; 113(3): 973-81, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24337511

RESUMEN

The eggs of Anopheles argyropus, Anopheles crawfordi, Anopheles nigerrimus, Anopheles nitidus, Anopheles paraliae, Anopheles peditaeniatus, Anopheles pursati, and Anopheles sinensis are described with the aid of scanning electron micrographs. Comparisons of the egg structure among the eight species showed that the eggs differed with respect to the following characteristics: the deck-complete (An. argyropus, An. nigerrimus, An. paraliae, An. peditaeniatus, and An. sinensis); variable (complete, split and incomplete decks found together within an egg batch/An. crawfordi); and division into an area at each end (An. nitidus and An. pursati). The ratios of the entire length per maximal deck width within the area covered by floats were 3.33-6.86 (An. sinensis), 8.78-18.20 (An. peditaeniatus), 13.67-22 (An. nigerrimus), 26.33-44.25 (An. paraliae), and 26.99-75.94 (An. argyropus). The numbers of float ribs were 21-27 (An. peditaeniatus) and 28-34 (An. nigerrimus), and the total numbers of anterior and posterior tubercles were 6-8 (An. paraliae) and 9-11 (An. argyropus). Exochorionic sculpturing was of reticulum type (An. argyropus, An. crawfordi, An. nigerrimus, An. nitidus, An. paraliae, An. peditaeniatus, and An. sinensis) and pure tubercle type (An. pursati). Attempts are proposed to construct a robust key for species identification based on the morphometrics and ultrastructures of eggs under scanning electron microscopy.


Asunto(s)
Anopheles , Óvulo/ultraestructura , Animales , Microscopía Electrónica de Rastreo , Especificidad de la Especie , Tailandia
9.
Parasit Vectors ; 6: 5, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23289957

RESUMEN

BACKGROUND: Filariasis, caused by Brugia malayi, is a public health problem in Thailand. Currently, at least two locations in southern Thailand are reported to be active endemic areas. Two and four Mansonia species are primary and secondary vectors, respectively, of the nocturnally subperiodic race, whereas, Coquillettidia crassipes is a vector of the diurnally subperiodic race. Although several Anopheles species have been incriminated extensively as natural and/or suspected vectors of B. malayi, little is known about vector competence between indigenous Anopheles and this filaria in Thailand. Thus, the susceptibility levels of eight species members in the Thai An. hyrcanus group to nocturnally subperiodic B. malayi are presented herein, and the two main refractory factors that affect them in different degrees of susceptibility have been elucidated. METHODS: Aedes togoi (a control vector), An. argyropus, An. crawfordi, An. nigerrimus, An. nitidus, An. paraliae, An. peditaeniatus, An. pursati and An. sinensis were allowed to feed artificially on blood containing B. malayi microfilariae, and dissected 14 days after feeding. To determine factors that take effect at different susceptibility levels, stain-smeared blood meals were taken from the midguts of Ae. togoi, An. peditaeniatus, An. crawfordi, An. paraliae, An. sinensis and An. nitidus immediately after feeding, and their dissected-thoraxes 4 days post blood-feedings were examined consecutively for microfilariae and L1 larvae. RESULTS: The susceptibility rates of Ae. togoi, An. peditaeniatus, An. crawfordi, An. nigerrimus, An. argyropus, An. pursati, An. sinensis, An. paraliae and An. nitidus to B. malayi were 70-95%, 70-100%, 80-85%, 50-65%, 60%, 60%, 10%, 5%, and 0%, respectively. These susceptibility rates related clearly to the degrees of normal larval development in thoracic muscles, i.e., Ae. togoi, An. peditaeniatus, An. crawfordi, An. paraliae, An. sinensis and An. nitidus yielded normal L1 larvae of 93.15%, 96.34%, 97.33%, 23.60%, 15.38% and 0%, respectively. CONCLUSIONS: An. peditaeniatus, An. crawfordi, An. nigerrimus, An. argyropus and An. pursati were high potential vectors. An. paraliae and An. sinensis were low potential vectors, while An. nitidus was a refractory vector. Two refractory mechanisms; direct toxicity and/or melanotic encapsulation against filarial larval were involved in the refractoriness of development in the thoracic muscles of the mosquito.


Asunto(s)
Anopheles/parasitología , Brugia Malayi/crecimiento & desarrollo , Filariasis/transmisión , Insectos Vectores/parasitología , Adulto , Animales , Brugia Malayi/fisiología , Gatos , Susceptibilidad a Enfermedades , Femenino , Interacciones Huésped-Parásitos , Humanos , Larva , Microfilarias , Carga de Parásitos , Tailandia
10.
J Vector Ecol ; 35(1): 106-15, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20618656

RESUMEN

The chemical compositions and larvicidal potential against mosquito vectors of selected essential oils obtained from five edible plants were investigated in this study. Using a GC/MS, 24, 17, 20, 21, and 12 compounds were determined from essential oils of Citrus hystrix, Citrus reticulata, Zingiber zerumbet, Kaempferia galanga, and Syzygium aromaticum, respectively. The principal constituents found in peel oil of C. hystrix were beta-pinene (22.54%) and d-limonene (22.03%), followed by terpinene-4-ol (17.37%). Compounds in C. reticulata peel oil consisted mostly of d-limonene (62.39%) and gamma-terpinene (14.06%). The oils obtained from Z. zerumbet rhizome had alpha-humulene (31.93%) and zerumbone (31.67%) as major components. The most abundant compounds in K. galanga rhizome oil were 2-propeonic acid (35.54%), pentadecane (26.08%), and ethyl-p-methoxycinnamate (25.96%). The main component of S. aromaticum bud oil was eugenol (77.37%), with minor amounts of trans-caryophyllene (13.66%). Assessment of larvicidal efficacy demonstrated that all essential oils were toxic against both pyrethroid-susceptible and resistant Ae. aegypti laboratory strains at LC50, LC95, and LC99 levels. In conclusion, we have documented the promising larvicidal potential of essential oils from edible herbs, which could be considered as a potentially alternative source for developing novel larvicides to be used in controlling vectors of mosquito-borne disease.


Asunto(s)
Aedes/efectos de los fármacos , Insecticidas/química , Insecticidas/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Piretrinas/farmacología , Animales , Cromatografía de Gases y Espectrometría de Masas , Larva/efectos de los fármacos
12.
Parasitol Res ; 102(5): 973-80, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18180955

RESUMEN

The fine structure of the reproductive system of Chrysomya megacephala (Fabricius), a blow fly species of medical importance, was studied using scanning electron microscopy (SEM) to contribute detailed morphological information on the external sexual organs or genitalia of this species. Analysis of the male genitalia or hypopygium revealed that the epandrium is a broad organ resembling a crescent shape, while the ejaculatory apodeme and aedeagal apodeme show similarity in their lengths. The cercus is significantly longer than the surstylus with its apical end being more or less rounded. Dense patches of long bristles, morphologically similar to the sensilla chaetica and sensilla trichodea, were found along the lower half of the cercus. The surstylus has a stout triangular shape, and the proximal half is greatly endowed with sensilla thought to be sensilla chaetica and sensilla trichodea. The aedeagus per se is prominent and has a clavate shape formed by the base theca and elongated phallus. The vesica of the phallus is a smooth bilobed structure, which curves inward. The juxta and juxta process are armed with many rows of strong spines resembling thorns in their appearance. The harpe is slender, recurved anteriorly, and distally pointed like a sickle. Regarding the female genitalia or ovipositor, SEM observation of the supraanal plate revealed it to be sclerotized and more or less triangular-shaped, lying between a pair of short cerci. Several types of sensilla were found on the supraanal plate, subanal plate and cercus, including the sensilla trichodea, sensilla basiconica, sensilla placodea, and probably, sensilla styloconica. The possible functions of sensilla distributed in particular regions of the fly genitalia are discussed.


Asunto(s)
Estructuras Animales/ultraestructura , Dípteros/ultraestructura , Genitales Femeninos/ultraestructura , Genitales Masculinos/ultraestructura , Animales , Dípteros/anatomía & histología , Femenino , Masculino , Microscopía Electrónica de Rastreo
13.
J Am Mosq Control Assoc ; 23(1): 80-3, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17536374

RESUMEN

The male genitalia of flesh fly Parasarcophaga (Liosarcophaga) dux (Diptera: Sarcophagidae) was observed using scanning electron microscopy (SEM). The phallus is a short, broad structure that is formed by a tubular base connected to a trumpet-shaped, anteroventrally expanded ventralia. The juxta projects forward from a broad base, which is connected to an upright long structure, the harpes. The juxta is apically bifurcated. The lateral styli bear three small spines curved inward. The pregonite and postgonite are slightly curved upward apically. The cerci are pointed and curved apically. Sensillae were observed on the surfaces of postgonite, surstylus, epandrium, and cerci.


Asunto(s)
Dípteros/ultraestructura , Animales , Genitales Masculinos/ultraestructura , Masculino , Microscopía Electrónica de Rastreo
14.
Parasitol Res ; 100(4): 729-37, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17096143

RESUMEN

Chemical analysis on Curcuma zedoaria rhizome volatile oil, using gas chromatography-mass spectrometer techniques, demonstrated the presence of beta-tumerone (19.88%), 1,8-cineole (8.93%), and 7-zingiberene (7.84%) as major constituents. Larvicidal efficacy against Aedes aegypti mosquitoes of zedoary oil and its formulated preparation, zedoary oil-impregnated sand granules, were investigated and compared with that of Abate(R)sand (temephos). Zedoary oil exhibited pronounced potential against the fourth instar larvae of A. aegypti with an LC(50) and LC(99) of 33.45 and 83.39 ppm, respectively. Application of zedoary oil at a dosage yielding ten times that of LC(99) offered complete larval mortality (100% mortality) for a period of 3 days, and the larval mortality subsequently decreased to lower than 50% after application for more than 5 days. Zedoary oil-impregnated sand granules provided remarkably longer activity, with a larval mortality of 100% for a period of 9 days; and mortality below 50% was obtained in week 3 of application. The complete larval mortality that resulted from applying temephos at dosages of 0.1 and 1 ppm persisted for a period of 6 days and 4 weeks, respectively, and the larval mortality below 50% was reported on day 18 and week 11, respectively. Testing A. aegypti species against stored samples of zedoary oil-impregnated sand granules demonstrated that the product stored at 4 degrees C showed the longest larvicidal activity, followed by those kept at ambient temperature and 45 degrees C, yielding a complete larval mortality for 9, 8, and 6 days, respectively. Most samples of zedoary oil-impregnated sand granules stored at each temperature for 1 month showed slightly higher efficacy than those kept for 2 months. The larvicidal efficacy of samples stored at 4 degrees C seemed to be comparable to that of the fresh sample. The efficacy in killing A. aegypti larvae and good biological stability of zedoary oil-impregnated sand granules make this product promising as an alternative to essential oil in the development of new botanical natural larvicide for use in mosquito control programs.


Asunto(s)
Aedes/efectos de los fármacos , Curcuma/química , Insecticidas/farmacología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Animales , Insecticidas/química , Larva/efectos de los fármacos , Dióxido de Silicio
15.
Parasitol Res ; 100(3): 561-74, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17102987

RESUMEN

Morphology of the alimentary canal of the mature third instar larva of the blow fly, Chrysomya megacephala (F.), was examined using light, scanning, and transmission electron microscopy. Salivary structures consist of a single median deferent duct that bifurcates into efferent ducts connected to paired, tubular salivary glands comprised of closely packed conical-shaped epithelial cells with large nuclei. The crop occurs as a large, swollen diverticulum of the digestive tube and is lined internally with convoluted cuticle (epicuticle and endocuticle). The esophagus is a simple, straight tube internally lined with cuticle and externally encompassed by muscle fibers. The cardia is a bulb-like structure composed of anterior foregut tissue and posterior midgut tissue from which the peritrophic membrane (PM) is produced. The midgut begins within the cardia which is flanked posteriorly by four tubular gastric caeca that are lined internally with four to five layers of cuboidal epithelial cells bearing microvilli. Midgut tissue is lined with simple cuboidal epithelium whose cells are filled with numerous secretory granules and possessed long microvilli facing the lumen. A peritrophic membrane is contained within the midgut lumen. The larval hindgut consists of the pylorus, Malpighian tubules, ileum, colon, rectum, and anus, posteriorly. The pylorus is characterized by a single layer of epithelial cells encircled by a muscular layer and the presence of PM within the lumen. Malpighian tubules each diverge into two tubular structures totalling four long tubules of long chained cuboidal cells bearing microvilli internally. The wall of the ileum is comprised primarily of a monolayer of cuboidal epithelial cells with large oval nuclei and more intense muscular fibers surrounding the periphery. A cuticular layer surrounds the lumen containing the PM. This inner cuticle consists of a thin epicuticle that is electron-dense; whereas, the endocuticle is much thicker but less electron-dense. Myo-epithelial cells are dense in the anal region, where the PM persists.


Asunto(s)
Dípteros/ultraestructura , Animales , Larva/ultraestructura
16.
J Vector Ecol ; 31(1): 138-44, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16859102

RESUMEN

Ethanolic extracts derived from three species of the Piperaceae (pepper) family, Piper longum L., P. ribesoides Wall., and P. sarmentosum Roxb. ex Hunt., were evaluated for efficacy against early 4th instar larvae of Aedes aegypti mosquitoes using larvicidal bioassays. The highest larvicidal efficacy was established from P. longum, followed by P. sarmentosum and P. ribesoides, with LC50 values of 2.23, 4.06, and 8.13 ppm, respectively. Observations of morphological alterations on treated 4th instar larvae revealed that most organs, except anal papillae, had a normal structural appearance that was similar to controls. Under light microscopy, the internal structures of anal papillae in the treated larvae showed shrinkage, while the external features were normal in appearance. Ultrastructural studies, however, clearly demonstrated external destruction, with extensive damage and shrunken cuticle of the anal papillae. The structural deformation of anal papillae probably led to their dysfunction, which may be intrinsically associated with the death of the larvae. This study affords some evidence regarding the action site of the pepper extracts and suggests their potential in developing new types of larvicides used for mosquito control.


Asunto(s)
Aedes , Insecticidas , Piper/química , Aedes/ultraestructura , Animales , Etanol/química , Larva , Dosificación Letal Mediana , Microscopía Electrónica de Rastreo , Control de Mosquitos , Extractos Vegetales
17.
Parasitol Res ; 99(6): 715-21, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16738885

RESUMEN

Essential oils derived from five plant species, celery (Apium graveolens), caraway (Carum carvi), zedoary (Curcuma zedoaria), long pepper (Piper longum), and Chinese star anise (Illicium verum), were subjected to investigation of adulticidal activity against mosquito vectors. Two populations of Aedes aegypti, the laboratory and natural field strains, collected in Chiang Mai province, northern Thailand were tested in pyrethroid-susceptibility bioassays. The results revealed that the natural field strain of A. aegypti was resistant to permethrin, with mortality rates ranging from 51 to 66%. A mild susceptibility, with mortality rates ranging from 82 to 88%, was observed in the natural field strain of A. aegypti exposed to lambdacyhalothrin, which suggested that this strain was tolerant and might be resistant to this insecticide. However, laboratory-reared A. aegypti exposed to discriminating dosages of permethrin and lambdacyhalothrin induced 100% mortality in all cases, thus indicating complete susceptibility of this strain to these insecticides. The adulticidal activity determined by topical application revealed that all five essential oils exerted a promising adulticidal efficacy against both laboratory and natural field strains of A. aegypti. Although the laboratory strain was slightly more susceptible to these essential oils than the natural field strain, no statistically significant difference was observed. Moreover, comparison of the adulticidal activity indicated that the performance of these essential oils against the two strains of A. aegypti was similar. The highest potential was established from caraway, followed by zedoary, celery, long pepper, and Chinese star anise, with an LC(50) in the laboratory strain of 5.44, 5.94, 5.96, 6.21, and 8.52 microg/mg female, respectively, and 5.54, 6.02, 6.14, 6.35, and 8.83 microg/mg female, respectively, in the field strain. These promising essential oils are, therefore, an alternative in developing and producing mosquito adulticides as an effective measure used in controlling and eradicating mosquito vectors.


Asunto(s)
Aedes , Insecticidas , Control de Mosquitos/métodos , Aceites Volátiles , Animales , Femenino , Dosificación Letal Mediana , Aceites de Plantas , Plantas/química , Tailandia
18.
Rev Inst Med Trop Sao Paulo ; 48(1): 33-7, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16547577

RESUMEN

Three Piper species, Piper longum, P. ribesoides and P. sarmentosum, were selected for investigation of adulticidal potential against Stegomyia aegypti, a main vector of dengue and dengue haemorrhagic fever. Successive extraction by maceration with 95% ethanol showed percentage yields of ethanolic extracts, which derived from P. longum, P. ribesoides and P. sarmentosum, of 8.89, 3.21 and 5.30% (w/w), respectively. All Piper extracts illustrated an impressive adulticidal activity when tested against female mosquitoes by topical application. The susceptibility of St. aegypti females to ethanol-extracted Piper was dose dependent and varied among the plant species. The highest adulticidal effect was established from P. sarmentosum, followed by P. ribesoides and P. longum, with LD50 values of 0.14, 0.15 and 0.26 microg/female, respectively. The potential of these Piper species, as possible mosquitocides, established convincing activity for further researches to develop natural substances for combat against adult mosquitoes.


Asunto(s)
Culicidae , Insectos Vectores , Insecticidas , Piper/química , Animales , Femenino , Extractos Vegetales/farmacología
19.
Rev. Inst. Med. Trop. Säo Paulo ; 48(1): 33-37, Jan.-Feb. 2006. ilus, tab
Artículo en Inglés | LILACS | ID: lil-423332

RESUMEN

Três espécies de Piper, Piper longum, P. ribesoides e P. sarmentosum, foram selecionadas para investigação da potencialidade contra Stegomyia aegypti adultos, principal vetor de dengue e febre do dengue hemorrágico. Sucessivas extrações por maceração com etanol a 95% mostraram uma porcentagem de extratos etanólicos, derivados de P. longum, P. ribesoides e P. sarmentosum, de 8,89, 3,21 e 5,30% (w/w), respectivamente. Todos os extratos de Piper mostraram atividade adulticida expressiva quando testados contra fêmeas de mosquitos através de aplicação tópica. A suscetibilidade das fêmeas do St. aegypt ao extrato de Piper etanólico foi dose dependente e variou entre as espécies de plantas. O mais elevado efeito adulticida foi demonstrado a partir do P. sarmentosum, seguido pelo P. ribesoides e P. longum, valores LD50 de 0,14, 0,15 e 0,26 µg/fêmea, respectivamente. O potencial destas espécies de Piper, como possíveis mosquiticidas, estabeleceu atividade convincente para futuras pesquisas a fim de desenvolver substâncias naturais para o combate a mosquitos adultos.


Asunto(s)
Animales , Femenino , Culicidae , Insectos Vectores , Insecticidas , Piper/química , Extractos Vegetales/farmacología
20.
Trop Med Int Health ; 10(11): 1190-8, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16262746

RESUMEN

In our search for new bioactive products against mosquito vectors, we reported the slightly larvicidal and adulticidal potency, but remarkable repellency of Apium graveolens both in laboratory and field conditions. Repellency of the ethanolic preparation of hexane-extracted A. graveolens was, therefore, investigated and compared with those of 15 commercial mosquito repellents including the most widely used, DEET. Hexane-extracted A. graveolens showed a significant degree of repellency in a dose-dependent manner with vanillin added. Ethanolic A. graveolens formulations (10-25% with and without vanillin) provided 2-5 h protection against female Aedes aegypti. Repellency that derived from the most effective repellent, 25% of hexane-extracted A. graveolens with the addition of 5% vanillin, was comparable to the value obtained from 25% of DEET with 5% vanillin added. Moreover, commercial repellents, except formulations of DEET, showed lower repellency than that of A. graveolens extract. When applied on human skin under field conditions, the hexane-extracted A. graveolens plus 5% vanillin showed a strong repellent action against a wide range of mosquito species belonging to various genera. It had a protective effect against Aedes gardnerii, Aedes lineatopennis, Anopheles barbirostris, Armigeres subalbatus, Culex tritaeniorhynchus, Culex gelidus, Culex vishnui group and Mansonia uniformis. The hexane-extracted A. graveolens did not cause a burning sensation or dermal irritation when applied to human skin. No adverse effects were observed on the skin or other parts of the human volunteers' body during 6 months of the study period or in the following 3 months, after which time observations ceased. Therefore, A. graveolens can be a potential candidate for use in the development of commercial repellents that may be an alternative to conventional synthetic chemicals, particularly in community vector control applications.


Asunto(s)
Apium/química , Culicidae/efectos de los fármacos , Repelentes de Insectos/farmacología , Adolescente , Adulto , Aedes/efectos de los fármacos , Animales , Anopheles/efectos de los fármacos , Antioxidantes/farmacología , Benzaldehídos/farmacología , Culex/efectos de los fármacos , DEET/farmacología , Femenino , Humanos , Masculino , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA