Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295536

RESUMEN

Soybean yield loss due to soybean cyst nematode (SCN) infestation has a negative impact on the U.S. economy. Most SCN-resistant soybeans carry a common resistance locus (Rhg1), conferred by copy number variation of a 31.2-kb segment at the Rhg1 locus. To identify the effects of Rhg1 copy number on the plant prior to SCN infection, we investigated genome-wide expression profiles in isogenic Fayette plants carrying different copy numbers at the Rhg1 locus (9-11 copies), that confer different levels of resistance to SCN. We found that even small differences in copy number lead to large changes in expression of downstream defense genes. The co-expression network constructed from differentially expressed genes (DEGs) outside the Rhg1 locus revealed complex effects of Rhg1 copy number on transcriptional regulation involving signal transduction and ethylene-mediated signaling pathways. Moreover, we report a variation in expression levels of phytoalexin biosynthesis-related genes that is correlated with copy number, and the activation of different NBS-LRR gene sets, indicating a broad effect of copy number on defense responses. Using qRT-PCR time series during SCN infection, we validated the SCN responses of DEGs detected in the copy number comparison and showed a stable upregulation of genes related to phytoalexin biosynthesis in resistant Fayette lines during the early stages of the incompatible interaction between soybeans and SCN, before syncytium formation. These results suggest additional genes that could enhance Rhg1-mediated SCN resistance.

2.
Mol Plant Microbe Interact ; 36(5): 261-272, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36574016

RESUMEN

The genes encoding the phosphate uptake system in Xanthomonas citri pv. glycines 12-2 were previously found to be upregulated when in soybean leaves. This study thus explored the role of the phosphate uptake system on its virulence to soybean. While phoB and pstSCAB mutants were greatly impaired in both inciting disease symptoms and growth in soybean, the virulence and growth in soybean of a phoU mutant was not reduced when compared with the wild-type strain. The expression of phoB and pstSCAB was highly induced in phosphate-deficient media. In addition, the expression of phoB, assessed with a fusion to a promoterless ice nucleation reporter gene, was greatly increased in soybean leaves, confirming that the soybean apoplast is a phosphorus-limited habitat for X. citri pv. glycines. Global gene expression profiles of phoB and phoU mutants of X. citri pv. glycines conducted under phosphate-limitation conditions in vitro, using RNA-seq, revealed that PhoB positively regulated genes involved in signal transduction, the xcs cluster type II secretion system, cell motility, and chemotaxis, while negatively regulating cell wall and membrane biogenesis, DNA replication and recombination and repair, and several genes with unknown function. PhoU also positively regulated the same genes involved in cell motility and chemotaxis. The severity of bacterial pustule disease was decreased in soybean plants grown under high phosphate fertilization conditions, demonstrating that high phosphate availability in soybean plants can affect infection by X. citri pv. glycines by modulation of the expression of phosphate uptake systems. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Glycine max , Xanthomonas , Glycine max/microbiología , Fosfatos , Glicina , Virulencia/genética , Xanthomonas/genética , Xanthomonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología
3.
Rice (N Y) ; 14(1): 88, 2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34693480

RESUMEN

BACKGROUND: Thailand is a country with large diversity in rice varieties due to its rich and diverse ecology. In this paper, 300 rice accessions from all across Thailand were sequenced to identify SNP variants allowing for the population structure to be explored. RESULTS: The result of inferred population structure from admixture and clustering analysis illustrated strong evidence of substructure in each geographical region. The results of phylogenetic tree, PCA analysis, and machine learning on population identifying SNPs also supported the inferred population structure. CONCLUSION: The population structure inferred in this study contains five subpopulations that tend to group individuals based on location. So, each subpopulation has unique genetic patterns, agronomic traits, as well as different environmental conditions. This study can serve as a reference point of the nation-wide population structure for supporting breeders and researchers who are interested in Thai rice.

4.
Theor Appl Genet ; 133(1): 87-102, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31570969

RESUMEN

KEY MESSAGE: Root transcriptome profiling of three soybean cultivars and a wild relative infected with soybean cyst nematode at migratory phase revealed differential resistance pathway responses between resistant and susceptible genotypes. The soybean cyst nematode (SCN), Heterodera glycines, is the most serious pathogen of soybean production throughout the world. Using resistant cultivars is the primary management strategy against SCN infestation. To gain insight into the still obscure mechanisms of genetic resistance to nematodes in different soybean genotypes, RNA-Seq profiling of the roots of Glycine max cv. Peking, Fayette, Williams 82, and a wild relative (Glycine soja PI 468916) was performed during SCN infection at the migratory phase. The analysis showed statistically significant changes of expression beginning at eight hours after inoculation in genes associated with defense mechanisms and pathways, such as the phenylpropanoid biosynthesis pathway, plant innate immunity and hormone signaling. Our results indicate the importance of the early plant response to migratory phase nematodes in pathogenicity determination. The transcriptome changes occurring during early SCN infection included a number of genes and pathways specific to the different resistant genotypes. We observed the most extensive resistant transcriptome reaction in PI 468916, where the resistant response was qualitatively different from that of commonly used G. max varieties.


Asunto(s)
Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Glycine max/parasitología , Enfermedades de las Plantas/genética , Transcripción Genética , Tylenchoidea/fisiología , Animales , Vías Biosintéticas/genética , Mapeo Cromosómico , Susceptibilidad a Enfermedades , Etilenos/biosíntesis , Perfilación de la Expresión Génica , Ontología de Genes , Genes de Plantas , Filogenia , Enfermedades de las Plantas/parasitología , Propanoles/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA