Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Transl Int Med ; 11(1): 57-69, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37223612

RESUMEN

Background and Objectives: Moderate-intensity continuous training (MICT) is used to observe lipidomic effects in adults. However, the efects of MICT on lipid metabolism in adolescents remain unclear. Therefore, we aimed to longitudinally characterize the lipid profile in adolescents during different periods of 6-week MICT. Methods: Fifteen adolescents undertook bicycle training at 65% of maximal oxygen consumption. Plasma samples were collected at four time points (T0, T1, T2, and T3). Targeted lipidomics was assessed by ultra-performance liquid chromatography-tandem mass spectrometry to characterize the plasma lipid profiles of the participants to identify the lipids present at differing concentrations and changes in lipid species with time. Results: MICT afected the plasma lipid profiles of the adolescents. The concentrations of diglycerides, phosphatidylinositol, lysophosphatidic acid, lysophosphatidylcholine, and lysophosphatidylethanolamine were increased at T1, decreased at T2, and increased again at T3. Fatty acids (FAs) showed an opposite trend. Ether-linked alkylphosphatidylcholine and triglycerides were significantly increased and remained high. Sphingolipid concentrations initially decreased and then remained low. Therefore, a single bout of exercise had substantial efects on lipid metabolism, but by T3, fewer lipid species were present at significantly diferent concentrations and the magnitudes of the remaining diferences were smaller than those at earlier times. Among all the changed lipids, only DG(14:1/18:1), HexCer(d18:1/22:1) and FA(22:0) showed no significant correlations with any other 51 lipids (P < 0.05). Glycerides and phospholipids showed positive correlations with each other (P < 0.05), but FAs were significantly negatively correlated with glycerides and phospholipids while positively with other FAs (P < 0.05). Pathway enrichment analysis showed that 50% of the metabolic pathways represented were related to lipid metabolism and lipid biosynthesis. Conclusion: MICT increases ether-linked alkylphosphatidylcholine and triglyceride concentrations. Diglyceride, phosphatidylinositol, and lysophosphatidylcholine concentrations initially rise and then decrease 6 weeks after MICT, but FA concentrations show an opposite trend. These changes might correlate with lipid metabolism or biosynthesis pathways.

2.
Sci Rep ; 12(1): 1161, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064127

RESUMEN

The Tibet Autonomous Region of China constitutes a unique and fragile ecosystem that is increasingly influenced by development and global climate change. To protect biodiversity and ecosystem services in Tibet, the Chinese government established a system of nature reserves at a significant cost; however, the effectiveness of nature reserves at protecting both-biodiversity and ecosystem service functions in Tibet is not clear. To determine the success of existing nature reserves, we determined importance areas for the conservation of mammal, plant, bird, amphibian, and reptile species, and for the protection of ecosystem service functions. The results indicated that important conservation areas for endangered plants were mainly distributed in the southern part of Nyingchi City, and for endangered animals, in the southern part of Nyingchi and Shannan Cities. Extremely important conservation areas for ecosystem service functions of carbon sequestration, water and soil protection, and flood regulation were mainly distributed in the southern part of Nyingchi and Shannan Cities, northern and southeastern parts of Nagqu City, and southern part of Ngari area. Based on an analysis of spatial overlap in protection areas, we conclude that existing natural reserves need to be expanded, and new ones need to be established to better protect biodiversity in Tibet Autonomous Region.

3.
Epilepsia ; 44(4): 475-88, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12680996

RESUMEN

PURPOSE: The aim of this study was to develop a new animal model of pharmacoresistant temporal lobe epilepsy (TLE) by repeated intramuscular injection of Coriaria lactone (CL) at subthreshold dosages and to explore the mechanisms that might be involved. METHODS: Healthy male Sprague-Dawley rats (n = 160) were randomized into four groups during the kindling process: three groups (n = 50 for each group) received CL injection at subthreshold dosages (1.25, 1.5, and 1.75 mg/kg, respectively), and ten received normal saline (NS) injection as a control group. The maximal human adult dosage of carbamazepine (CBZ), valproate (VPA), and phenytoin (PHT) was administered as monotherapy to different groups of kindled rats for 1 month (n = 20 for each group). Changes in EEG recording, seizure number, intensity (expressed as grade 1-5 according to Racine stage), and duration, including spontaneous seizures during different interventions, were compared. The expression of P-170, a multiple drug resistance gene (MDR1) encoding P-glycoprotein, was measured in brain samples from different groups of experimental rats by using an image analysis and measurement system (ImagePro-Plus 4.0). RESULTS: A total of 70 (46.7%) rats were fully kindled with a median of 15 (seven to 20) CL injections. Electrocorticogram (ECoG) including hippocampal (EHG) monitoring revealed the temporal lobe origins of epileptiform potentials, which were consistent with the behavioral changes observed. Spontaneous seizures occurred with frequency and diurnal patterns similar to those of human TLE. The antiepileptic drugs (AEDs) tested lacked a satisfactory seizure control. The maximal P-170 expression was in the kindled rats with AED treatment; the next highest was in the kindled rats without AED intervention. Nonkindled SD rats with CL injection also had increased P-170 expression compared with control SD rats. CONCLUSIONS: The study provided a simple and stable animal TLE kindling model with pharmacoresistant properties. The pharmacoresistance observed in the kindled rats to CBZ, VPA, and PHT at maximal human adult dosages together with the increased P-170 expression was a distinct feature of this model. This model might be used in further investigations of the mechanisms involved in pharmacoresistant TLE and for developing new AEDs.


Asunto(s)
Anticonvulsivantes/farmacología , Modelos Animales de Enfermedad , Resistencia a Medicamentos/genética , Medicamentos Herbarios Chinos , Epilepsia del Lóbulo Temporal/inducido químicamente , Excitación Neurológica/efectos de los fármacos , Lactonas/farmacología , Fitoterapia , Subfamilia B de Transportador de Casetes de Unión a ATP , Animales , Relación Dosis-Respuesta a Droga , Electroencefalografía/efectos de los fármacos , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/fisiopatología , Expresión Génica/efectos de los fármacos , Glicoproteínas/genética , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Inyecciones Intramusculares , Excitación Neurológica/genética , Excitación Neurológica/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Lóbulo Temporal/efectos de los fármacos , Lóbulo Temporal/patología , Lóbulo Temporal/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA