Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 243: 116117, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38522383

RESUMEN

Ubrogepant is the first oral calcitonin gene-related peptide (CGRP) receptor antagonist which is used for the acute treatment of migraine in adults. The present study employs liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance spectroscopy (NMR) techniques for the identification and characterization of degradation impurities of ubrogepant. The forced degradation study of ubrogepant was performed as per the International Council for Harmonisation (ICH) Q1A and Q1B guidelines. The in silico degradation profile of ubrogepant was predicted by Zeneth. It was observed that ubrogepant was labile to acidic hydrolysis, basic hydrolysis, and oxidative degradation conditions (H2O2), although it was stable in neutral hydrolysis and photolytic (UV light and visible light) conditions. Eight degradation impurities were formed, which were separated on reversed-phase HPLC with a gradient program on an InertSustain C8 column (4.6 × 250 mm, 5 µm) using 10 mM ammonium formate (pH unadjusted) and acetonitrile as the mobile phase. The structures of all the degradation impurities were characterized using the exact masses obtained from the HRMS/MS. Further, NMR studies were conducted on two major degradation impurities (UB-4 and UB-7). A plausible mechanism was proposed to support the structures of all the degradation impurities of UBR. In silico toxicity and mutagenicity assessment were done by DEREK Nexus, SARAH Nexus, and ProTox-II.


Asunto(s)
Peróxido de Hidrógeno , Piridinas , Pirroles , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Espectroscopía de Resonancia Magnética/métodos , Oxidación-Reducción , Hidrólisis , Estabilidad de Medicamentos
2.
Biomed Chromatogr ; 38(5): e5849, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403275

RESUMEN

Nirmatrelvir (NRV), a 3C-like protease or Mpro inhibitor of SARS-CoV-2, is used for the treatment of COVID-19 in adult and paediatric patients. The present study was accomplished to investigate the comprehensive metabolic fate of NRV using in vitro and in vivo models. The in vitro models used for the study were microsomes (human liver microsomes, rat liver microsomes, mouse liver microsomes) and S9 fractions (human liver S9 fractions and rat liver S9 fractions) with the appropriate cofactors, whereas Sprague-Dawley rats were used as the in vivo models. Nirmatrelvir was administered orally to Sprague-Dawley rats, which was followed by the collection of urine, faeces and blood at pre-determined time intervals. Protein precipitation was used as the sample preparation method for all the samples. The samples were then analysed by liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-Q-ToF-MS/MS) using an Acquity BEH C18 column with 0.1% formic acid and acetonitrile as the mobile phase. Four metabolites were found to be novel, which were formed via amide hydrolysis, oxidation and hydroxylation. Furthermore, an in silico analysis was performed using Meteor Nexus software to predict the probable metabolic changes of NRV. The toxicity and mutagenicity of NRV and its metabolites were also determined using DEREK Nexus and SARAH Nexus.


Asunto(s)
Microsomas Hepáticos , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Animales , Espectrometría de Masas en Tándem/métodos , Ratas , Humanos , Microsomas Hepáticos/metabolismo , Ratones , Cromatografía Liquida/métodos , Masculino , Simulación por Computador , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/metabolismo , Antivirales/análisis , Antivirales/química
3.
Rapid Commun Mass Spectrom ; 37(18): e9605, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37580847

RESUMEN

RATIONALE: Baricitinib (BARI), an inhibitor of Janus kinases 1 and 2 (JAK 1/2), is used for the treatment of rheumatoid arthritis and COVID-19. The present study focuses on establishing the forced degradation behavior of BARI under different degradation conditions (hydrolysis, oxidation, and photolysis) following International Council for Harmonization (ICH) guidelines of Q1A (R2)-Stability testing of new drug substances and products and Q1B-Photostability testing of new drug substances and products. This study helps in monitoring the quality and safety of BARI and its product development. METHODS: Prior to conducting the study, the in silico degradation profile of BARI was predicted by Zeneth. Reversed-phase high-performance liquid chromatography employing a gradient program was used for the identification and separation of degradation impurities with an InertSustain C8 column (4.6 × 250 mm, 5 µm). The mobile phases used were 10 mM ammonium formate (pH 2.89) and acetonitrile. High-resolution mass spectrometry (HRMS) was used for the structural elucidation of the degradation impurities. RESULTS: BARI was labile to hydrolytic (acidic, basic, and neutral) and photolytic degradation conditions which yielded 10 new degradation impurities and it was stable under oxidative (H2 O2 ) conditions. The separated degradation impurities were characterized by HRMS and the respective degradation pathways were proposed. The generated information helped to propose a mechanism for the formation of the degradation impurities. Additionally, one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy were used for the characterization of two major degradation impurities. CONCLUSION: The forced degradation study of BARI was carried out in accordance with ICH Q1A and Q1B guidelines, which resulted in the formation of 10 new degradation impurities. In our analysis, three degradation impurities were matching with the Zeneth predictions. In silico tools, DEREK Nexus® and SARAH Nexus®, were used for predicting the toxicity and mutagenicity of BARI and its degradation impurities. Overall, this study sheds light on BARI's safety monitoring and storage circumstances.


Asunto(s)
COVID-19 , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Tratamiento Farmacológico de COVID-19 , Oxidación-Reducción , Espectroscopía de Resonancia Magnética/métodos , Hidrólisis , Fotólisis , Estabilidad de Medicamentos
4.
Neurochem Int ; 163: 105483, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36641109

RESUMEN

BACKGROUND: Due to the rising cases of treatment-refractory affective disorders, the discovery of newer therapeutic approaches is needed. In recent times, probiotics have garnered notable attention in managing stress-related disorders. Herein, we examined the effect of Bacillus coagulans Unique IS-2® probiotic on anxiety- and depression-like phenotypes employing maternal separation (MS) and chronic-unpredictable mild stress (CUMS) model in rats. METHODS: Both male and female Sprague-Dawley rats were subjected to MS + CUMS. Probiotic treatment was provided for 6 weeks via drinking water. Anxiety- and depression-like phenotypes were assessed using sucrose-preference test (SPT), forced-swimming test (FST), elevated-plus maze test (EPM), and open-field test (OFT). Blood, brain, intestine, and fecal samples were obtained for biochemical and molecular studies. RESULTS: Stress-exposed rats drank less sucrose solution, showed increased passivity, and explored less in open-arms in SPT, FST, and EPM, respectively. These stress-generated neurobehavioral aberrations were alleviated by 6-week of Bacillus coagulans Unique IS-2 treatment. The overall locomotor activity in OFT remained unchanged. The decreased levels of BDNF and serotonin and increased levels of C-reactive protein, TNF-α, IL-1ß, and dopamine, in the hippocampus and/or frontal cortex of stress-exposed rats were reversed following probiotic treatment. Administration of probiotic also restored the systemic levels of L-tryptophan, L-kynurenine, kynurenic-acid, and 3-hydroxyanthranilic acid, villi/crypt ratio, goblet-cell count, Firmicutes to Bacteroides ratio, and levels of acetate, propionate, and butyrate in fecal samples. These results indicate remodeling of the microbiome gut-brain axis in Bacillus coagulans Unique IS-2 recipient rats. However, protein levels of doublecortin, GFAP, and zona occludens in the hippocampus and occludin-immunoreactivity in the intestine remained unchanged. No prominent sex-specific changes were noted. CONCLUSION: Anxiolytic- and antidepressant-like effects of Bacillus coagulans Unique IS-2 in MS + CUMS rat model may be mediated via reshaping the microbiome gut-brain axis.


Asunto(s)
Ansiolíticos , Bacillus coagulans , Microbiota , Femenino , Ratas , Masculino , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Ansiolíticos/metabolismo , Bacillus coagulans/metabolismo , Ratas Sprague-Dawley , Eje Cerebro-Intestino , Privación Materna , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Hipocampo/metabolismo , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad , Factor Neurotrófico Derivado del Encéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA