Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38543370

RESUMEN

Several researchers have examined the interest in using a thermoplastic to increase thermoset polymers' shock resistance. However, fewer studies have examined the nature of the mechanisms involved between both kinds of polymers. This was the objective of our work, which was carried out using a gradual approach. First, we describe the synthesis of a poly(ether ether ketone) oligomer (oPEEK) with hydroxyl terminations from the reaction of hydroquinone and 4,4'-difluorobenzophenone in N-methyl-2-pyrrolidone. Then, the main physicochemical properties of this oligomer were determined using different thermal analyses (i.e., differential scanning calorimetry (DSC), thermogravimetric (ATG), and thermomechanical analyses) to isolate its response alone. The chemical characterisation of this compound using conventional analytical chemistry techniques was more complex due to its insolubility. To this end, it was sulfonated, according to a well-known process, to make it soluble and enable nuclear magnetic resonance (NMR) and size exclusion chromatography (SEC) experiments. Additional information about the structural and chemical characteristics of the oligomer and its average molecular weight could thus be obtained. The synthesis of an oligoPEEK with α,ω-hydroxyl end-groups and a molecular weight of around 5070 g/mol was thus confirmed by NMR. This value was in accordance with that determined by SEC analysis. Next, the reaction of oPEEK with an epoxy prepolymer was demonstrated using DSC and dynamic rheometry. To this end, uncured mixtures of epoxy prepolymer (DGEBA) with different proportions of oPEEK (3, 5, 10 and 25%) were prepared and characterised by both techniques. Ultimately, the epoxy-oPEEK mixture was cured with isophorone diamine. Finally, topological analyses were performed by atomic force microscopy (AFM) in tapping mode to investigate the interface quality between the epoxy matrix and the oPEEK particles indirectly. No defects, such as decohesion areas, microvoids, or cracks, were observed between both systems.

2.
Polymers (Basel) ; 15(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37835993

RESUMEN

This review aims to report the status of the research on polyaryletherketone-based thermoplastic blends (PAEK). PAEK are high-performance copolymers able to replace metals in many applications including those related to the environmental and energy transition. PAEK lead to the extension of high-performance multifunctional materials to target embedded electronics, robotics, aerospace, medical devices and prostheses. Blending PAEK with other thermostable thermoplastic polymers is a viable option to obtain materials with new affordable properties. First, this study investigates the miscibility of each couple. Due to different types of interactions, PAEK-based thermoplastic blends go from fully miscible (with some polyetherimides) to immiscible (with polytetrafluoroethylene). Depending on the ether-to-ketone ratio of PAEK as well as the nature of the second component, a large range of crystalline structures and blend morphologies are reported. The PAEK-based thermoplastic blends are elaborated by melt-mixing or solution blending. Then, the effect of the composition and blending preparation on the mechanical properties are investigated. PAEK-based thermoplastic blends give rise to the possibility of tuning their properties to design novel materials. However, we demonstrate hereby that significant research effort is needed to overcome the lack of knowledge on the structure/morphology/property relationships for those types of high-performance thermoplastic blends.

3.
Polymers (Basel) ; 14(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36080540

RESUMEN

Polyethylene terephthalate (PET) is among the most used thermoplastic polymers in large scale manufacturing. Opaque PET is increasingly used in milk bottles to save weight and to bring a glossy white aspect due to TiO2 nanoparticles. The recyclability of opaque PET is an issue: whereas the recycling channels are well established for transparent PET, the presence of opaque PET in household wastes weakens those channels: opaque bottles cannot be mixed with transparent ones because the resulting blend is not transparent anymore. Many research efforts focus on the possibility to turn opaque PET into resources, as one key to a more circular economy. A recent study has demonstrated the improvement of the mechanical properties of recycled PET through reactive extrusion. In the present work, the lifespan of recycled opaque PET has been evaluated throughout tensile-tensile fatigue loading cycles at various steps of the recycling process: The specimens are obtained from flakes after grinding PET wastes (F-r-OPET), from a subsequent homogenization step (r-OPET-hom) and after reactive extrusion (Rex-r-OPET). Virgin PET is also considered as a comparison. First, tensile tests monitored by digital image correlation have been carried out to obtain the elastic modulus and ultimate tensile stress of each type of PET. The fatigue properties of reactive REx-r-OPET increase, probably associated with the rise of cross-linking and branching rates. The fatigue lifespan increases with the macromolecular weight. The fracture surface analysis of specimens brings new insight regarding the factors governing the fatigue behavior and the damaging mode of recycled PET. TiO2 nanoparticles act as stress concentrators, contributing to void formation at multiple sites and thus promoting the fracture process. Finally, the fatigue life of REx-r-OPET is comparable to those of virgin PET. Upcycling opaque PET by reactive extrusion may be a relevant new route to absorb some of the growing amounts of PET worldwide.

4.
Polymers (Basel) ; 14(17)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36080738

RESUMEN

Reactive thermoplastics matrices offer ease of processing using well-known molding techniques (such as Resin Transfer Molding) due to their initially low viscosity. For Polyamide 6 (PA6)/glass composites, the hydroxyl groups on the glass surface slow down the anionic ring-opening polymerization (AROP) reaction, and can ultimately inhibit it. This work aims to thoroughly control the hydroxyl groups and the surface chemistry of glass particulates to facilitate in situ AROP-an aspect that has been barely explored until now. A model system composed of a PA6 matrix synthesized by AROP is reinforced with calcinated and silanized glass microparticles. We systematically quantify, by TGA and FTIR, the complete particle surface modification sequence, from the dehydration, dehydroxylation and rehydroxylation processes, to the silanization step. Finally, the impact of the particle surface chemistry on the polymerization and crystallization of the PA6/glass composites was quantified by DSC. The results confirm that a careful balance is required between the dehydroxylation process, the simultaneous rehydroxylation and silane grafting, and the residual hydroxyl groups, in order to maintain fast polymerization and crystallization kinetics and to prevent reaction inhibition. Specifically, a hydroxyl concentration above 0.2 mmol OH·g-1 leads to a slowdown of the PA6 polymerization reaction. This reaction can be completely inhibited when the hydroxyl concentration reaches 0.77 mmol OH·g-1 as in the case of fully rehydroxylated particles or pristine raw particles. Furthermore, both the rehydroxylation and silanization processes can be realized simultaneously without any negative impact on the polymerization. This can be achieved with a silanization time of 2 h under the treatment conditions of the study. In this case, the silane agent gradually replaces the regenerated hydroxyls. This work provides a roadmap for the preparation of reinforced reactive thermoplastic materials.

5.
Materials (Basel) ; 15(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36143674

RESUMEN

In the present work, an ultrasonic, an induction, and a through transmission laser welding were compared to join carbon fibre reinforced polyetheretherketone (CF/PEEK) composites. The advantages and drawbacks of each process are discussed, as well as the material properties required to fit each process. CF/PEEK plates were consolidated at 395 °C with an unidirectional sequence and cross-stacking ply orientation. In some configurations, a polyetherimide (PEI) layer or substrate was used. The thermal, mechanical, and optical properties of the materials were measured to highlight the specific properties required for each process. The drying conditions were defined as 150 °C during at least 8 h for PEI and 24 h for CF/PEEK to avoid defects due to water. The optical transmission factor of PEI is above 40% which makes it suitable for through transmission laser welding. The thermal conductivity of CF/PEEK is at most 55 W·(m·K)-1, which allows it to weld by induction without a metallic susceptor. Ultrasonic welding is the most versatile process as it does not necessitate any specific properties. Then, the mechanical resistance of the welds was measured by single lap shear. For CF/PEEK on CF/PEEK, the maximum lap shear strength (LSS) of 28.6 MPa was reached for a joint obtained by ultrasonic welding, while an induction one brought 17.6 MPa. The maximum LSS of 15.2 MPa was obtained for PEI on CF/PEEK assemblies by laser welding. Finally, interfacial resistances were correlated to the fracture modes through observations of the fractured surfaces. CF/PEEK on CF/PEEK joints resulted in mixed cohesive/adhesive failure at the interface and within the inner layers of both substrates. This study presents a guideline to select the suitable welding process when assembling composites for the aerospace industry.

6.
Nanomaterials (Basel) ; 12(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36014599

RESUMEN

Hexagonal boron nitride (h-BN) has recently gained much attention due to its high thermal conductivity and low electrical conductivity. In this study, we proposed to evaluate the impact of the modification of h-BN for use in a polymethylmethacrylate/polyamide 6 (PMMA/PA6) polymer blend. Different methods to modify h-BN particles and improve their affinity with polymers were proposed. The modification was performed in two steps: (1) a hydroxylation step for which three different routes were used: calcination, acidic treatment, and ball milling using gallic acid; (2) a grafting step for which four different silane agents were used, carrying different molecular or macromolecular groups: the octadecyl group (Si-C18), propyl amine group (Si-NH2), polystyrene chain (Si-PS), and PMMA chain (Si-PMMA). The modified h-BN samples after hydroxylation and functionalization were characterized by FTIR and TGA. Py-GC/MS was also used to prove the successful graft with Si-C18 groups. Sedimentation tests and multiple light scattering were performed to assess the surface modification of h-BN. Granulometry and SEM observations were performed to evaluate the particle size distribution after hydroxylation. After the addition of Si-PMMA modified h-BN into a PMMA/PA6 co-continuous blend, the morphology of the polymer blend nanocomposites was characterized using SEM. The calculation of the wetting parameter based on the surface tension measurement using the liquid drop model showed that h-BN dispersed in the PA6 phase. Grafting PMMA chains onto hydroxylated h-BN particles combined with an adequate sequence mixing led to a successful localization of the grafted h-BN particles at the interface of the PMMA/PA6 blend.

7.
Polymers (Basel) ; 13(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062773

RESUMEN

Polyetheretherketone (PEEK)/polyethersulfone (PES) blends are initially not miscible, except when the blends are prepared by solvent mixing. We propose a route to elaborate PEEK/PES blends with partial miscibility by melt mixing at 375 °C with phenolphthalein. The miscibility of blends has been examined using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMTA). When adding phenolphthalein to PEEK/PES blends, the glass transitions are shifted inward as an indication of miscibility. We suggest that phenolphthalein acts as a compatibilizer by creating cardo side groups on PEEK and PES chains by nucleophilic substitution in the melted state, although this condensation reaction was reported only in the solvent until now. In addition, phenolphthalein acts as a plasticizer for PES by decreasing its glass transition. As a consequence, the PEEK phase is softened which favors the crystallization as the increase of crystalline rate. Due to aromatic moieties in phenolphthalein, the storage modulus of blends in the glassy region is kept identical to pure PEEK. The morphological analysis by SEM pictures displays nano- to microsized PES spherical domains in the PEEK matrix with improved PEEK/PES interfacial adhesion.

8.
Langmuir ; 35(1): 128-140, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30537835

RESUMEN

While the surface of many ceramic particles is covered by positive and negative species, boron nitride displays no charge on the surface. Nevertheless, the interest in boron nitride is rising: Little materials combine electrical insulation and high thermal conductivity; both properties are required for many applications, for instance, in electronic devices and sensors. Hydroxyl (-OH) groups are usually created on the surface to increase the hydrophilicity of particles. In this work, we compare four treatments to select the one that increases most significantly the hydrophilicity of hexagonal boron nitride platelets, that is to say, for which the most -OH groups are grafted onto the surface. The treated particles have been studied by SEM, FTIR, and XPS. Our results show that these techniques are not appropriate to probe slight chemical changes. Indeed, hydroxyl groups are more likely introduced on the edges of the platelets. The highest hydroxyl concentration corresponds to 2.4% of boron atoms functionalized. The settling of low concentrated suspensions has been followed by optical visualization. Multiple light scattering was used for high concentrated suspensions. The rheological behavior of stable suspensions in water and isopropanol has been determined by transient flow and dynamic tests. Measuring the viscosity of suspensions appears as a way to evaluate the surface alterations of boron nitride. The method involving thermal treatment is the most efficient to increase the concentration of hydroxyl groups when the particles are suspended in water. The treatment with nitric acid seems to be the most efficient when the particles are suspended in isopropanol. Moreover, the thermal treatment is more environmentally friendly than using strong acids or bases. Hydroxylated particles can be used either as a starting material for further modification such as covalent functionalization or directly to prepare suspensions or polymeric based composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA