Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36236723

RESUMEN

Building information modeling (BIM), a common technology contributing to information processing, is extensively applied in construction fields. BIM integration with augmented reality (AR) is flourishing in the construction industry, as it provides an effective solution for the lifecycle of a project. However, when applying BIM to AR data transfer, large and complicated models require large storage spaces, increase the model transfer time and data processing workload during rendering, and reduce visualization efficiency when using AR devices. The geometric optimization of the model using mesh reconstruction is a potential solution that can reduce the required storage while maintaining the shape of the components. In this study, a 3D engine-based mesh reconstruction algorithm that can pre-process BIM shape data and implement an AR-based full-size model is proposed, which is likely to increase the efficiency of decision making and project processing for construction management. As shown in the experimental validation, the proposed algorithm significantly reduces the number of vertices, triangles, and storage for geometric models while maintaining the overall shape. Moreover, the model elements and components of the optimized model have the same visual quality as the original model; thus, a high performance can be expected for BIM visualization in AR devices.

2.
Sensors (Basel) ; 20(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322529

RESUMEN

As civil engineering structures become larger, non-contact inspection technology is required to measure the overall shape and size of structures and evaluate safety. Structures are easily exposed to the external environment and may not be able to perform their original functions depending on the continuous load for a long time. Therefore, in this study, we propose a method for estimating the vertical displacement of structures using light detection and ranging, which enables non-contact measurement. The point cloud acquired through laser scanning was rearranged into a three-dimensional space, and internal nodes were created by continuously dividing the space. The generated node has its own location information, and the vertical displacement value was calculated by searching for the node where the deformation occurred. The performance of the proposed displacement estimation technique was verified through static loading experiments, and the octree space partitioning method is expected to be applied and utilized in structural health monitoring.

3.
Sensors (Basel) ; 20(7)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290172

RESUMEN

The Light Detection And Ranging (LiDAR) system has become a prominent tool in structural health monitoring. Among such systems, Terrestrial Laser Scanning (TLS) is a potential technology for the acquisition of three-dimensional (3D) information to assess structural health conditions. This paper enhances the application of TLS to damage detection and shape change analysis for structural element specimens. Specifically, estimating the deflection of a structural element with the aid of a Lidar system is introduced in this study. The proposed approach was validated by an indoor experiment by inducing artificial deflection on a simply supported beam. A robust genetic algorithm method is utilized to enhance the accuracy level of measuring deflection using lidar data. The proposed research primarily covers robust optimization of a genetic algorithm control parameter using the Taguchi experiment design. Once the acquired data is defined in terms of plane, which has minimum error, using a genetic algorithm and the deflection of the specimen can be extracted from the shape change analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA