Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 36(41): 12160-12167, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32960615

RESUMEN

Injection of sea water is the most common practice to displace oil in porous media in subsurface formations. In numerous studies, conventional surfactants at concentrations in a range of one weight percent have been proposed to be added to the injected water to improve oil recovery. Surfactants accumulate at the oil-water interface and may reduce the interfacial tension by three orders of magnitude or more, resulting in higher oil recovery. Recently, we have proposed the addition of ultralow concentration of a non-ionic surfactant to the injected water to increase interface viscoelasticity as a new process. The increase in interface viscoelasticity increases oil recovery from porous media. This alternative approach requires only a concentration of 100 ppm (two orders less than the conventional improved oil recovery) and therefore is potentially a much more efficient process. In this work, we present a comprehensive report of the process in an intermediate-wet carbonate rock. There is very little adsorption of the functional molecules to the rock surface. Because the critical micelle concentration is low (around 30 ppm), most of the molecules move to the fluid-fluid interface to form molecular structures, which give rise to an increase in interface elasticity. We also demonstrate that interface elasticity has a non-monotonic behavior with the salt concentration of injected brine, and an optimum salinity exists for maximum oil recovery.

2.
Langmuir ; 30(41): 12243-9, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25254947

RESUMEN

Herein is presented a new methodology to determine the static adsorption of a zwitterionic surfactant on limestone in three different aqueous media [high-performance liquid chromatography (HPLC) water, seawater, and connate water] with the use of HPLC at room temperature and 70 °C. The results showed that, in both HPLC water and seawater, the surfactant adsorption followed a monolayer Langmuir tendency. In contrast, for connate water, the surfactant presented a new adsorption profile, characterized by two regions: (i) At surfactant concentrations below 1500 mg L(-1), an increase of adsorption is observed as the amount of divalent cations increases in the aqueous media. (ii) At surfactant concentrations above 1500 mg L(-1), the adsorption decreases because the equilibrium, monomer ⇆ micelle ⇆ vesicle, is shifted to the formation of vesicles, giving as a result a decrease in the concentration of monomers, thus reducing the interaction between the surfactant and the rock, and therefore, lower adsorption values were obtained. The behavior of the surfactant adsorption under different concentrations of divalent cations was well-described by the use of a new modified Langmuir model: (dΓ/dt)ads = k(ads)c(Γ∞ - Γ) - k(cmc)(c - c(cmc))(n)ΓH(c - c(cmc)). It was also observed that, as the temperature increases, the adsorption is reduced because of the exothermic nature of the adsorption processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA