Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39237746

RESUMEN

PURPOSE: Targeted radionuclide therapy (TRT) is a cancer treatment with relative therapeutic efficacy across various cancer types. We studied the therapeutic potential of TRT using fibroblast activation protein-α (FAP) targeting sdAbs (4AH29) labelled with 225Ac or 131I in immunocompetent mice in a human FAP (hFAP) expressing lung cancer mouse model. We further explored the combination of TRT with programmed cell death ligand 1 (PD-L1) immune checkpoint blockade (ICB). METHODS: We studied the biodistribution and tumour uptake of [131I]I-GMIB-4AH29 and [225Ac]Ac-DOTA-4AH29 by ex vivo γ-counting. Therapeutic efficacy of [131I]I-GMIB-4AH29 and [225Ac]Ac-DOTA-4AH29 was evaluated in an immunocompetent mouse model. Flow cytometry analysis of tumours from [225Ac]Ac-DOTA-4AH29 treated mice was performed. Treatment with [225Ac]Ac-DOTA-4AH29 was repeated in combination with PD-L1 ICB. RESULTS: The biodistribution showed high tumour uptake of [131I]I-GMIB-4AH29 with 3.5 ± 0.5% IA/g 1 h post-injection (p.i.) decreasing to 0.9 ± 0.1% IA/g after 24 h. Tumour uptake of [225Ac]Ac-DOTA-4AH29 was also relevant with 2.1 ± 0.5% IA/g 1 h p.i. with a less steep decrease to 1.7 ± 0.2% IA/g after 24 h. Survival was significantly improved after treatment with low and high doses [131I]I-GMIB-4AH29 or [225Ac]Ac-DOTA-4AH29 compared to vehicle solution. Moreover, we observed significantly higher PD-L1 expression in tumours of mice treated with [225Ac]Ac-DOTA-4AH29 compared to vehicle solution. Therefore, we combined high dose [225Ac]Ac-DOTA-4AH29 with PD-L1 ICB showing therapeutic synergy. CONCLUSION: [225Ac]Ac-DOTA-4AH29 and [131I]I-GMIB-4AH29 exhibit high and persistent tumour targeting, translating into prolonged survival in mice bearing aggressive tumours. Moreover, we demonstrate that the combination of PD-L1 ICB with [225Ac]Ac-DOTA-4AH29 TRT enhances its therapeutic efficacy.

2.
EJNMMI Radiopharm Chem ; 9(1): 54, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048805

RESUMEN

BACKGROUND: Radiofluorination of single domain antibodies (sdAbs) via N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) has shown to be a promising strategy in the development of sdAb-based PET tracers. While automation of the prosthetic group (PG) [18F]SFB production, has been successfully reported, no practical method for large scale sdAb labelling has been reported. Therefore, we optimized and automated the PG production, enabling a subsequently efficient manual conjugation reaction to an anti-fibroblast activation protein (FAP)-α sdAb (4AH29) and an anti-folate receptor (FR)-α sdAb (2BD42). Both the alpha isoform of FAP and the FR are established tumour markers. FAP-α is known to be overexpressed mainly by cancer-associated fibroblasts in breast, ovarian, and other cancers, while its expression in normal tissues is low or undetectable. FR-α has an elevated expression in epithelial cancers, such as ovarian, brain and lung cancers. Non-invasive imaging techniques, such as PET-imaging, using tracers targeting specific tumour markers can provide molecular information over both the tumour and its environment, which aides in the diagnosis, therapy selection and assessment of the cancer treatment. RESULTS: [18F]SFB was synthesized using a fully automated three-step, one-pot reaction. The total procedure time was 54 min and results in [18F]SFB with a RCP > 90% and a RCY d.c. of 44 ± 4% (n = 13). The manual conjugation reaction after purification produced [18F]FB-sdAbs with a RCP > 95%, an end of synthesis activity > 600 MBq and an apparent molar activity > 10 GBq/µmol. Overall RCY d.c., corrected to the trapping of [18F]F- on the QMA, were 9% (n = 1) and 5 ± 2% (n = 3) for [18F]FB-2BD42 and [18F]FB-4AH29, respectively. CONCLUSION: [18F]SFB synthesis was successfully automated and upscaled on a Trasis AllInOne module. The anti-hFAP-α and anti-hFR-α sdAbs were radiofluorinated, yielding similar RCYs d.c. and RCPs, showing the potential of this method as a generic radiofluorination strategy for sdAbs. The radiofluorinated sdAbs showed a favourable biodistribution pattern and are attractive for further characterization as new PET tracers for FAP-α and FR-α imaging.

3.
Sci Rep ; 13(1): 18995, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923822

RESUMEN

Blockade of the immune checkpoint axis consisting of programmed death-1 (PD-1) and its ligand PD-L1 alleviates the functional inhibition of tumor-infiltrating lymphoid cells yet weakly induces their expansion. Exogenous cytokines could further expand lymphoid cells and thus synergize with αPD-L1 therapy. However, systemic delivery of most cytokines causes severe toxicity due to unspecific expansion of immune cells in the periphery. Here, we modelled local delivery of cytokines and αPD-L1 therapeutics to immune cell-containing in vitro melanoma tumors. Three-dimensional tumor models consisting of 624-MEL cells were co-cultured with human peripheral blood lymphoid cells (PBLs) in presence of the cytokines IL-2, IL-7, IL-15, IL-21 and IFN-γ. To model local gene therapy, melanoma tumors were modified with lentiviral vectors encoding IL-15 fused to IL-15Rα (IL-15/IL-15Rα) and K2-Fc, a fusion of a human PD-L1 specific single domain antibody to immunoglobulin (Ig)G1 Fc. To evaluate the interplay between PBL fractions, NK cells, CD4+ T cells or CD8+ T cells were depleted. Tumor cell killing was followed up using real time imaging and immune cell expansion and activation was evaluated with flow cytometry. Among the tested cytokines, IL-15 was the most potent cytokine in stimulating tumor cell killing and expanding both natural killer (NK) cells and CD8+ T cells. Gene-based delivery of IL-15/IL-15Rα to tumor cells, shows expansion of NK cells, activation of NK cells, CD4+ and CD8+ T cells, and killing of tumor spheroids. Both NK cells and CD8+ T cells are necessary for tumor cell killing and CD4+ T-cell activation was reduced without NK cells. Co-delivery of K2-Fc improved tumor cell killing coinciding with increased activation of NK cells, which was independent of bystander T cells. CD4+ or CD8+ T cells were not affected by the co-delivery of K2-Fc even though NK-cell activation impacted CD4+ T-cell activation. This study demonstrates that gene-based delivery of IL-15/IL-15Rα to tumor cells effectively mediates anti-tumor activity and sensitizes the tumor microenvironment for therapy with αPD-L1 therapeutics mainly by impacting NK cells. These findings warrant further investigation of gene-based IL-15 and K2-Fc delivery in vivo.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Humanos , Antígeno B7-H1/genética , Interleucina-15/genética , Células Asesinas Naturales , Melanoma/genética , Melanoma/terapia , Citocinas/farmacología , Terapia Genética , Linfocitos T CD4-Positivos , Microambiente Tumoral
4.
Front Immunol ; 14: 1268900, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799715

RESUMEN

Introduction: T cell Ig and ITIM domain receptor (TIGIT) is a next-generation immune checkpoint predominantly expressed on activated T cells and NK cells, exhibiting an unfavorable prognostic association with various malignancies. Despite the emergence of multiple TIGIT-blocking agents entering clinical trials, only a fraction of patients responded positively to anti-TIGIT therapy. Consequently, an urgent demand arises for noninvasive techniques to quantify and monitor TIGIT expression, facilitating patient stratification and enhancing therapeutic outcomes. Small antigen binding moieties such as nanobodies, are promising candidates for such tracer development. Methods: We generated a panel of anti-human or anti-mouse TIGIT nanobodies from immunized llamas. In addition, we designed a single-chain variable fragment derived from the clinically tested monoclonal antibody Vibostolimab targeting TIGIT, and assessed its performance alongside the nanobodies. In vitro characterization studies were performed, including binding ability and affinity to cell expressed or recombinant TIGIT. After Technetium-99m labeling, the nanobodies and the single-chain variable fragment were evaluated in vivo for their ability to detect TIGIT expression using SPECT/CT imaging, followed by ex vivo biodistribution analysis. Results: Nine nanobodies were selected for binding to recombinant and cell expressed TIGIT with low sub-nanomolar affinities and are thermostable. A six-fold higher uptake in TIGIT-overexpressing tumor was demonstrated one hour post- injection with Technetium-99m labeled nanobodies compared to an irrelevant control nanobody. Though the single-chain variable fragment exhibited superior binding to TIGIT-expressing peripheral blood mononuclear cells in vitro, its in vivo behavior yielded lower tumor-to-background ratios at one hour post- injection, indicating that nanobodies are better suited for in vivo imaging than the single-chain variable fragment. Despite the good affinity, high specificity and on-target uptake in mice in this setting, imaging of TIGIT expression on tumor- infiltrating lymphocytes within MC38 tumors remained elusive. This is likely due to the low expression levels of TIGIT in this model. Discussion: The excellent affinity, high specificity and rapid on-target uptake in mice bearing TIGIT- overexpressing tumors showed the promising diagnostic potential of nanobodies to noninvasively image high TIGIT expression within the tumor. These findings hold promise for clinical translation to aid patient selection and improve therapy response.


Asunto(s)
Neoplasias , Anticuerpos de Cadena Única , Anticuerpos de Dominio Único , Animales , Ratones , Humanos , Tecnecio , Anticuerpos de Dominio Único/química , Distribución Tisular , Leucocitos Mononucleares , Tomografía Computarizada de Emisión de Fotón Único , Neoplasias/diagnóstico por imagen , Receptores Inmunológicos
5.
J Nucl Med ; 64(5): 751-758, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37055223

RESUMEN

Targeted radionuclide therapy (TRT) using targeting moieties labeled with α-particle-emitting radionuclides (α-TRT) is an intensely investigated treatment approach as the short range of α-particles allows effective treatment of local lesions and micrometastases. However, profound assessment of the immunomodulatory effect of α-TRT is lacking in literature. Methods: Using flow cytometry of tumors, splenocyte restimulation, and multiplex analysis of blood serum, we studied immunologic responses ensuing from TRT with an antihuman CD20 single-domain antibody radiolabeled with 225Ac in a human CD20 and ovalbumin expressing B16-melanoma model. Results: Tumor growth was delayed with α-TRT and increased blood levels of various cytokines such as interferon-γ, C-C motif chemokine ligand 5, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1. Peripheral antitumoral T-cell responses were detected on α-TRT. At the tumor site, α-TRT modulated the cold tumor microenvironment (TME) to a more hospitable and hot habitat for antitumoral immune cells, characterized by a decrease in protumoral alternatively activated macrophages and an increase in antitumoral macrophages and dendritic cells. We also showed that α-TRT increased the percentage of programmed death-ligand 1 (PD-L1)-positive (PD-L1pos) immune cells in the TME. To circumvent this immunosuppressive countermeasure we applied immune checkpoint blockade of the programmed cell death protein 1-PD-L1 axis. Combination of α-TRT with PD-L1 blockade potentiated the therapeutic effect, however, the combination aggravated adverse events. A long-term toxicity study revealed severe kidney damage ensuing from α-TRT. Conclusion: These data suggest that α-TRT alters the TME and induces systemic antitumoral immune responses, which explains why immune checkpoint blockade enhances the therapeutic effect of α-TRT. However, further optimization is warranted to avoid adverse events.


Asunto(s)
Melanoma Experimental , Anticuerpos de Dominio Único , Animales , Humanos , Anticuerpos de Dominio Único/farmacología , Antígeno B7-H1/metabolismo , Microambiente Tumoral , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunomodulación , Melanoma Experimental/radioterapia , Inmunidad , Línea Celular Tumoral
6.
Int Rev Cell Mol Biol ; 369: 143-199, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35777863

RESUMEN

Cancer is a heterogeneous disease, requiring treatment tailored to the unique phenotype of the patient's tumor. Monoclonal antibodies (mAbs) and variants thereof have enabled targeted therapies to selectively target cancer cells. Cancer cell-specific mAbs have been used for image-guided surgery and targeted delivery of radionuclides or toxic agents, improving classical treatment strategies. Cancer cell-specific mAbs can further inhibit tumor cell growth or can stimulate immune-mediated destruction of cancer cells, a feature that has also been achieved through mAb-mediated manipulation of immune cells and pathways. Drawbacks of mAbs and their variants, together with the discovery of camelid heavy chain-only antibodies and the many advantageous features of their variable domains, referred to as VHHs, single domain antibodies or nanobodies (Nbs), resulted in the exploration of Nbs as an alternative targeting moiety. We therefore review the state-of-the-art as well as novel exploitation strategies of Nbs for targeted cancer therapy.


Asunto(s)
Neoplasias , Anticuerpos de Dominio Único , Anticuerpos Monoclonales , Humanos , Neoplasias/tratamiento farmacológico , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/uso terapéutico
7.
Mol Cancer Ther ; 21(7): 1136-1148, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35499391

RESUMEN

Targeted radionuclide therapy (TRT) using probes labeled with Lutetium-177 (177Lu) represents a new and growing type of cancer therapy. We studied immunologic changes in response to TRT with 177Lu labeled anti-human CD20 camelid single domain antibodies (sdAb) in a B16-melanoma model transfected to express human CD20, the target antigen, and ovalbumin, a surrogate tumor antigen. High-dose TRT induced melanoma cell death, calreticulin exposure, and ATP-release in vitro. Melanoma-bearing mice received fractionated low and high-dose TRT via tumor targeting anti-human CD20 sdAbs, as opposed to control sdAbs. Tumor growth was delayed with both doses. Low- and high-dose TRT increased IL10 serum levels. Low-dose TRT also decreased CCL5 serum levels. At the tumor, high-dose TRT induced a type I IFN gene signature, while low-dose TRT induced a proinflammatory gene signature. Low- and high-dose TRT increased the percentage of PD-L1pos and PD-L2pos myeloid cells in tumors with a marked increase in alternatively activated macrophages after high-dose TRT. The percentage of tumor-infiltrating T cells was not changed, yet a modest increase in ovalbumin-specific CD8pos T-cells was observed after low-dose TRT. Contradictory, low and high-dose TRT decreased CD4pos Th1 cells in addition to double negative T cells. In conclusion, these data suggest that low and high-dose TRT induce distinct immunologic changes, which might serve as an anchoring point for combination therapy.


Asunto(s)
Melanoma Experimental , Anticuerpos de Dominio Único , Animales , Antígenos CD20 , Línea Celular Tumoral , Modelos Animales de Enfermedad , Lutecio , Melanoma Experimental/patología , Ratones , Ovalbúmina , Radioisótopos/uso terapéutico
8.
Mol Ther Methods Clin Dev ; 22: 172-182, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34485603

RESUMEN

Monoclonal antibodies that target the inhibitory immune checkpoint axis consisting of programmed cell death protein 1 (PD-1) and its ligand, PD-L1, have changed the immune-oncology field. We identified K2, an anti-human PD-L1 single-domain antibody fragment, that can enhance T cell activation and tumor cell killing. In this study, the potential of different K2 formats as immune checkpoint blocking medicines was evaluated using a gene-based delivery approach. We showed that 2K2 and 3K2, a bivalent and trivalent K2 format generated using a 12 GS (glycine-serine) linker, were 313- and 135-fold more potent in enhancing T cell receptor (TCR) signaling in PD-1POS cells than was monovalent K2. We further showed that bivalent constructs generated using a 30 GS linker or disulfide bond were 169- and 35-fold less potent in enhancing TCR signaling than was 2K2. 2K2 enhanced tumor cell killing in a 3D melanoma model, albeit to a lesser extent than avelumab. Therefore, an immunoglobulin (Ig)G1 antibody-like fusion protein was generated, referred to as K2-Fc. K2-Fc was significantly better than avelumab in enhancing tumor cell killing in the 3D melanoma model. Overall, this study describes K2-based immune checkpoint medicines, and it highlights the benefit of an IgG1 Fc fusion to K2 that gains bivalency, effector functions, and efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA