Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2528: 91-114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35704187

RESUMEN

RNase H1 has become an essential tool to uncover the physiological and pathological roles of R-loops, three-stranded structures consisting of and RNA-DNA hybrid opposite to a single DNA strand (ssDNA). RNase H1 degrades the RNA portion of the R-loops returning the two DNA strands to double-stranded form (dsDNA). Overexpression of RNase H1 in different systems has helped to address the questions of where R-loops are located, their abundance, and mechanisms of formation, stability, and degradation. In this chapter we review multiple studies that used RNase H1 as an instrument to investigate R-loops multiple functions and their relevance in health and diseases.


Asunto(s)
Estructuras R-Loop , Ribonucleasa H , ADN/metabolismo , ARN/metabolismo , Ribonucleasa H/metabolismo
2.
Curr Genet ; 66(6): 1073-1084, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32886170

RESUMEN

RNA/DNA hybrids are processed by RNases H1 and H2, while single ribonucleoside-monophosphates (rNMPs) embedded in genomic DNA are removed by the error-free, RNase H2-dependent ribonucleotide excision repair (RER) pathway. In the absence of RER, however, topoisomerase 1 (Top1) can cleave single genomic rNMPs in a mutagenic manner. In RNase H2-deficient mice, the accumulation of genomic rNMPs above a threshold of tolerance leads to catastrophic genomic instability that causes embryonic lethality. In humans, deficiencies in RNase H2 induce the autoimmune disorders Aicardi-Goutières syndrome and systemic lupus erythematosus, and cause skin and intestinal cancers. Recently, we reported that in Saccharomyces cerevisiae, the depletion of Rnr1, the major catalytic subunit of ribonucleotide reductase (RNR), which converts ribonucleotides to deoxyribonucleotides, leads to cell lethality in absence of RNases H1 and H2. We hypothesized that under replicative stress and compromised DNA repair that are elicited by an insufficient supply of deoxyribonucleoside-triphosphates (dNTPs), cells cannot survive the accumulation of persistent RNA/DNA hybrids. Remarkably, we found that cells lacking RNase H2 accumulate ~ 5-fold more genomic rNMPs in absence than in presence of Rnr1. When the load of genomic rNMPs is further increased in the presence of a replicative DNA polymerase variant that over-incorporates rNMPs in leading or lagging strand, cells missing both Rnr1 and RNase H2 suffer from severe growth defects. These are reversed in absence of Top1. Thus, in cells lacking RNase H2 and containing a limiting supply of dNTPs, there is a threshold of tolerance for the accumulation of genomic ribonucleotides that is tightly associated with Top1-mediated DNA damage. In this mini-review, we describe the implications of the loss of RNase H2, or RNases H1 and H2, on the integrity of the nuclear genome and viability of budding yeast cells that are challenged with a critically low supply of dNTPs. We further propose that our findings in budding yeast could pave the way for the study of the potential role of mammalian RNR in RNase H2-related diseases.


Asunto(s)
Replicación del ADN/genética , ADN-Topoisomerasas de Tipo I/genética , Ribonucleasa H/genética , Animales , Reparación del ADN/genética , Humanos , Ratones , Mutagénesis , Ribonucleótidos/genética , Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 48(8): 4274-4297, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32187369

RESUMEN

Cellular levels of ribonucleoside triphosphates (rNTPs) are much higher than those of deoxyribonucleoside triphosphates (dNTPs), thereby influencing the frequency of incorporation of ribonucleoside monophosphates (rNMPs) by DNA polymerases (Pol) into DNA. RNase H2-initiated ribonucleotide excision repair (RER) efficiently removes single rNMPs in genomic DNA. However, processing of rNMPs by Topoisomerase 1 (Top1) in absence of RER induces mutations and genome instability. Here, we greatly increased the abundance of genomic rNMPs in Saccharomyces cerevisiae by depleting Rnr1, the major subunit of ribonucleotide reductase, which converts ribonucleotides to deoxyribonucleotides. We found that in strains that are depleted of Rnr1, RER-deficient, and harbor an rNTP-permissive replicative Pol mutant, excessive accumulation of single genomic rNMPs severely compromised growth, but this was reversed in absence of Top1. Thus, under Rnr1 depletion, limited dNTP pools slow DNA synthesis by replicative Pols and provoke the incorporation of high levels of rNMPs in genomic DNA. If a threshold of single genomic rNMPs is exceeded in absence of RER and presence of limited dNTP pools, Top1-mediated genome instability leads to severe growth defects. Finally, we provide evidence showing that accumulation of RNA/DNA hybrids in absence of RNase H1 and RNase H2 leads to cell lethality under Rnr1 depletion.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótidos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Daño del ADN , Desoxirribonucleótidos/metabolismo , Genoma Fúngico , Inestabilidad Genómica , Mutación , Ribonucleasa H/genética , Ribonucleasas/genética , Puntos de Control de la Fase S del Ciclo Celular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia
4.
DNA Repair (Amst) ; 84: 102736, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31761672

RESUMEN

Eukaryotic RNases H2 have dual functions in initiating the removal of ribonucleoside monophosphates (rNMPs) incorporated by DNA polymerases during DNA synthesis and in cleaving the RNA moiety of RNA/DNA hybrids formed during transcription and retrotransposition. The other major cellular RNase H, RNase H1, shares the hybrid processing activity, but not all substrates. After RNase H2 incision at the rNMPs in DNA the Ribonucleotide Excision Repair (RER) pathway completes the removal, restoring dsDNA. The development of the RNase H2-RED (Ribonucleotide Excision Defective) mutant enzyme, which can process RNA/DNA hybrids but is unable to cleave rNMPs embedded in DNA has unlinked the two activities and illuminated the roles of RNase H2 in cellular metabolism. Studies mostly in Saccharomyces cerevisiae, have shown both activities of RNase H2 are necessary to maintain genome integrity and that RNase H1 and H2 have overlapping as well as distinct RNA/DNA hybrid substrates. In mouse RNase H2-RED confirmed that rNMPs in DNA during embryogenesis induce lethality in a p53-dependent DNA damage response. In mammalian cell cultures, RNase H2-RED helped identifying DNA lesions produced by Top1 cleavage at rNMPs and led to determine that RNase H2 participates in the retrotransposition of LINE-1 elements. In this review, we summarize the studies and conclusions reached by utilization of RNase H2-RED enzyme in different model systems.


Asunto(s)
Reparación del ADN , Ribonucleasa H/metabolismo , Animales , Humanos , Ribonucleasa H/química , Ribonucleasa H/genética , Ribonucleótidos/genética
6.
Cell Rep ; 25(5): 1135-1145.e5, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30380406

RESUMEN

RNase H2 has two distinct functions: initiation of the ribonucleotide excision repair (RER) pathway by cleaving ribonucleotides (rNMPs) incorporated during DNA replication and processing the RNA portion of an R-loop formed during transcription. An RNase H2 mutant lacking RER activity but supporting R-loop removal revealed that rNMPs in DNA initiate p53-dependent DNA damage response and early embryonic arrest in mouse. However, an RNase H2 AGS-related mutant with residual RER activity develops to birth. Estimations of the number of rNMPs in DNA in these two mutants define a ribonucleotide threshold above which p53 induces apoptosis. Below the threshold, rNMPs in DNA trigger an innate immune response. Compound heterozygous cells, containing both defective enzymes, retain rNMPs above the threshold, indicative of competition for RER substrates between active and inactive enzymes, suggesting that patients with compound heterozygous mutations in RNASEH2 genes may not reflect the properties of recombinantly expressed proteins.


Asunto(s)
Desarrollo Embrionario , Mutación/genética , Ribonucleasa H/genética , Ribonucleótidos/metabolismo , Animales , ADN/metabolismo , Daño del ADN , Reparación del ADN/efectos de los fármacos , Pérdida del Embrión/patología , Embrión de Mamíferos/anomalías , Desarrollo Embrionario/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Interferones/farmacología , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Proteínas Mutantes/metabolismo , Estabilidad del ARN/efectos de los fármacos , Ribonucleasa H/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
7.
J Mol Biol ; 429(21): 3255-3263, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-28065739

RESUMEN

R-loops, three-strand structures consisting of mRNA hybridized to the complementary DNA and a single-stranded DNA loop, are formed in switch regions on the heavy-chain immunoglobulin locus. To determine if R-loops have a direct effect on any of the steps involved in isotype switching, we generated a transgenic mouse that over-expressed RNase H1, an enzyme that cleaves the RNA of RNA/DNA hybrids in B cells. R-loops in the switch µ region were depleted by 70% in ex vivo activated splenic B cells. Frequencies of isotype switching to IgG1, IgG2b, IgG2c, and IgG3 were the same as C57BL/6 control cells. However, somatic hypermutation was increased specifically on the transcribed strand from µ-γ joins, indicating that R-loops limit activation-induced (cytosine) deaminase access to the transcribed DNA strand. Our data suggest that, in the normal G+C-rich context of mammalian class switch recombination regions, R-loops are obligatory intermediates. Processing of the R-loops is needed to remove RNA allowing activation-induced (cytosine) deaminase to promote somatic hypermutation on both DNA strands to generate double-strand DNA breaks for efficient class switch recombination. One of the two cellular RNases H may assist in this process.


Asunto(s)
Linfocitos B/metabolismo , Citidina Desaminasa/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Isotipos de Inmunoglobulinas/genética , Conformación de Ácido Nucleico , Recombinación Genética , Ribonucleasa H/fisiología , Animales , Citidina Desaminasa/genética , Roturas del ADN de Doble Cadena , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Hipermutación Somática de Inmunoglobulina
8.
Trends Biochem Sci ; 41(5): 434-445, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26996833

RESUMEN

The abundance of ribonucleotides in DNA remained undetected until recently because they are efficiently removed by the ribonucleotide excision repair (RER) pathway, a process similar to Okazaki fragment (OF) processing after incision by Ribonuclease H2 (RNase H2). All DNA polymerases incorporate ribonucleotides during DNA synthesis. How many, when, and why they are incorporated has been the focus of intense work during recent years by many labs. In this review, we discuss recent advances in ribonucleotide incorporation by eukaryotic DNA polymerases that suggest an evolutionarily conserved role for ribonucleotides in DNA. We also review the data that indicate that removal of ribonucleotides has an important role in maintaining genome stability.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/genética , Reparación del ADN , ADN/metabolismo , Lupus Eritematoso Sistémico/genética , Malformaciones del Sistema Nervioso/genética , Ribonucleasa H/genética , Ribonucleótidos/metabolismo , Animales , Archaeoglobus fulgidus/genética , Archaeoglobus fulgidus/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/patología , ADN/genética , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Inestabilidad Genómica , Humanos , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Mutación , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/patología , Nucleosomas/genética , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Ribonucleótidos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
J Exp Med ; 213(3): 329-36, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26880576

RESUMEN

The neuroinflammatory autoimmune disease Aicardi-Goutières syndrome (AGS) develops from mutations in genes encoding several nucleotide-processing proteins, including RNase H2. Defective RNase H2 may induce accumulation of self-nucleic acid species that trigger chronic type I interferon and inflammatory responses, leading to AGS pathology. We created a knock-in mouse model with an RNase H2 AGS mutation in a highly conserved residue of the catalytic subunit, Rnaseh2a(G37S/G37S) (G37S), to understand disease pathology. G37S homozygotes are perinatal lethal, in contrast to the early embryonic lethality previously reported for Rnaseh2b- or Rnaseh2c-null mice. Importantly, we found that the G37S mutation led to increased expression of interferon-stimulated genes dependent on the cGAS-STING signaling pathway. Ablation of STING in the G37S mice results in partial rescue of the perinatal lethality, with viable mice exhibiting white spotting on their ventral surface. We believe that the G37S knock-in mouse provides an excellent animal model for studying RNASEH2-associated autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Inmunidad Innata , Proteínas de la Membrana/metabolismo , Mutación/genética , Malformaciones del Sistema Nervioso/inmunología , Nucleotidiltransferasas/metabolismo , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Dominio Catalítico , Células Cultivadas , Cruzamientos Genéticos , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Homocigoto , Humanos , Interferones/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Masculino , Ratones , Malformaciones del Sistema Nervioso/genética , Fenotipo , Transducción de Señal
10.
DNA Repair (Amst) ; 35: 1-12, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26340535

RESUMEN

DNA polymerase η (pol η) is best characterized for its ability to perform accurate and efficient translesion DNA synthesis (TLS) through cyclobutane pyrimidine dimers (CPDs). To ensure accurate bypass the polymerase is not only required to select the correct base, but also discriminate between NTPs and dNTPs. Most DNA polymerases have a conserved "steric gate" residue which functions to prevent incorporation of NMPs during DNA synthesis. Here, we demonstrate that the Phe35 residue of Saccharomyces cerevisiae pol η functions as a steric gate to limit the use of ribonucleotides during polymerization both in vitro and in vivo. Unlike the related pol ι enzyme, wild-type pol η does not readily incorporate NMPs in vitro. In contrast, a pol η F35A mutant incorporates NMPs on both damaged and undamaged DNA in vitro with a high degree of base selectivity. An S.cerevisiae strain expressing pol η F35A (rad30-F35A) that is also deficient for nucleotide excision repair (rad1Δ) and the TLS polymerase, pol ζ (rev3Δ), is extremely sensitive to UV-light. The sensitivity is due, in part, to RNase H2 activity, as an isogenic rnh201Δ strain is roughly 50-fold more UV-resistant than its RNH201(+) counterpart. Interestingly the rad1Δ rev3Δ rad30-F35A rnh201Δ strain exhibits a significant increase in the extent of spontaneous mutagenesis with a spectrum dominated by 1bp deletions at runs of template Ts. We hypothesize that the increased mutagenesis is due to rA incorporation at these sites and that the short poly rA tract is subsequently repaired in an error-prone manner by a novel repair pathway that is specifically targeted to polyribonucleotide tracks. These data indicate that under certain conditions, pol η can compete with the cell's replicases and gain access to undamaged genomic DNA. Such observations are consistent with a role for pol η in replicating common fragile sites (CFS) in human cells.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , ADN Polimerasa Dirigida por ADN/química , Inestabilidad Genómica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Alanina/química , Alanina/genética , Sustitución de Aminoácidos , Secuencia de Bases , Secuencia Conservada , Replicación del ADN , ADN de Hongos/química , ADN de Hongos/genética , ADN Polimerasa Dirigida por ADN/genética , Datos de Secuencia Molecular , Mutagénesis , Mutación , Fenilalanina/química , Fenilalanina/genética , Polirribonucleótidos/metabolismo , Ribonucleótidos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Rayos Ultravioleta
11.
Proc Natl Acad Sci U S A ; 112(30): 9334-9, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26162680

RESUMEN

Encoding ribonuclease H1 (RNase H1) degrades RNA hybridized to DNA, and its function is essential for mitochondrial DNA maintenance in the developing mouse. Here we define the role of RNase H1 in mitochondrial DNA replication. Analysis of replicating mitochondrial DNA in embryonic fibroblasts lacking RNase H1 reveals retention of three primers in the major noncoding region (NCR) and one at the prominent lagging-strand initiation site termed Ori-L. Primer retention does not lead immediately to depletion, as the persistent RNA is fully incorporated in mitochondrial DNA. However, the retained primers present an obstacle to the mitochondrial DNA polymerase γ in subsequent rounds of replication and lead to the catastrophic generation of a double-strand break at the origin when the resulting gapped molecules are copied. Hence, the essential role of RNase H1 in mitochondrial DNA replication is the removal of primers at the origin of replication.


Asunto(s)
Cartilla de ADN/química , Replicación del ADN , ADN Mitocondrial/química , Ribonucleasa H/química , Animales , Línea Celular , ADN/química , Exones , Fibroblastos/metabolismo , Genotipo , Homocigoto , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Nucleótidos/química , ARN/química , ARN Mitocondrial , Origen de Réplica
12.
Nucleic Acids Res ; 41(5): 3130-43, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23355612

RESUMEN

Ribonuclease H2 (RNase H2) protects genome integrity by its dual roles of resolving transcription-related R-loops and ribonucleotides incorporated in DNA during replication. To unlink these two functions, we generated a Saccharomyces cerevisiae RNase H2 mutant that can resolve R-loops but cannot cleave single ribonucleotides in DNA. This mutant definitively correlates the 2-5 bp deletions observed in rnh201Δ strains with single rNMPs in DNA. It also establishes a connection between R-loops and Sgs1-mediated replication reinitiation at stalled forks and identifies R-loops uniquely processed by RNase H2. In mouse, deletion of any of the genes coding for RNase H2 results in embryonic lethality, and in humans, RNase H2 hypomorphic mutations cause Aicardi-Goutières syndrome (AGS), a neuroinflammatory disorder. To determine the contribution of R-loops and rNMP in DNA to the defects observed in AGS, we characterized in yeast an AGS-related mutation, which is impaired in processing both substrates, but has sufficient R-loop degradation activity to complement the defects of rnh201Δ sgs1Δ strains. However, this AGS-related mutation accumulates 2-5 bp deletions at a very similar rate as the deletion strain.


Asunto(s)
Ribonucleasa H/química , Saccharomyces cerevisiae/enzimología , Thermotoga maritima/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , ADN/química , Reparación del ADN , Humanos , Enlace de Hidrógeno , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , ARN/química , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Ribonucleasas/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato
13.
Mol Cell ; 47(6): 980-6, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22864116

RESUMEN

Ribonucleotides are incorporated into DNA by the replicative DNA polymerases at frequencies of about 2 per kb, which makes them by far the most abundant form of potential DNA damage in the cell. Their removal is essential for restoring a stable intact chromosome. Here, we present a complete biochemical reconstitution of the ribonucleotide excision repair (RER) pathway with enzymes purified from Saccharomyces cerevisiae. RER is most efficient when the ribonucleotide is incised by RNase H2, and further excised by the flap endonuclease FEN1 with strand displacement synthesis carried out by DNA polymerase δ, the PCNA clamp, its loader RFC, and completed by DNA ligase I. We observed partial redundancy for several of the enzymes in this pathway. Exo1 substitutes for FEN1 and Pol ε for Pol δ with reasonable efficiency. However, RNase H1 fails to substitute for RNase H2 in the incision step of RER.


Asunto(s)
Acetiltransferasas/metabolismo , Reparación del ADN , Proteínas de la Membrana/metabolismo , Ribonucleasa H/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , ADN Polimerasa II/metabolismo , ADN Polimerasa III/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ribonucleótidos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
15.
J Biol Chem ; 286(12): 10540-50, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21177858

RESUMEN

RNase H2 cleaves RNA sequences that are part of RNA/DNA hybrids or that are incorporated into DNA, thus, preventing genomic instability and the accumulation of aberrant nucleic acid, which in humans induces Aicardi-Goutières syndrome, a severe autoimmune disorder. The 3.1 Å crystal structure of human RNase H2 presented here allowed us to map the positions of all 29 mutations found in Aicardi-Goutières syndrome patients, several of which were not visible in the previously reported mouse RNase H2. We propose the possible effects of these mutations on the protein stability and function. Bacterial and eukaryotic RNases H2 differ in composition and substrate specificity. Bacterial RNases H2 are monomeric proteins and homologs of the eukaryotic RNases H2 catalytic subunit, which in addition possesses two accessory proteins. The eukaryotic RNase H2 heterotrimeric complex recognizes RNA/DNA hybrids and (5')RNA-DNA(3')/DNA junction hybrids as substrates with similar efficiency, whereas bacterial RNases H2 are highly specialized in the recognition of the (5')RNA-DNA(3') junction and very poorly cleave RNA/DNA hybrids in the presence of Mg(2+) ions. Using the crystal structure of the Thermotoga maritima RNase H2-substrate complex, we modeled the human RNase H2-substrate complex and verified the model by mutational analysis. Our model indicates that the difference in substrate preference stems from the different position of the crucial tyrosine residue involved in substrate binding and recognition.


Asunto(s)
Modelos Moleculares , Ribonucleasa H/química , Animales , Enfermedades Autoinmunes del Sistema Nervioso/enzimología , Enfermedades Autoinmunes del Sistema Nervioso/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Humanos , Magnesio , Ratones , Mutación , Malformaciones del Sistema Nervioso/enzimología , Malformaciones del Sistema Nervioso/genética , Ácidos Nucleicos Heterodúplex/química , Ácidos Nucleicos Heterodúplex/genética , Estructura Cuaternaria de Proteína , Ribonucleasa H/genética , Homología Estructural de Proteína , Especificidad por Sustrato , Thermotoga maritima/enzimología
16.
Mol Cell ; 40(4): 658-70, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21095591

RESUMEN

Two classes of RNase H hydrolyze RNA of RNA/DNA hybrids. In contrast to RNase H1 that requires four ribonucleotides for cleavage, RNase H2 can nick duplex DNAs containing a single ribonucleotide, suggesting different in vivo substrates. We report here the crystal structures of a type 2 RNase H in complex with substrates containing a (5')RNA-DNA(3') junction. They revealed a unique mechanism of recognition and substrate-assisted cleavage. A conserved tyrosine residue distorts the nucleic acid at the junction, allowing the substrate to function in catalysis by participating in coordination of the active site metal ion. The biochemical and structural properties of RNase H2 explain the preference of the enzyme for junction substrates and establish the structural and mechanistic differences with RNase H1. Junction recognition is important for the removal of RNA embedded in DNA and may play an important role in DNA replication and repair.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Thermotoga maritima/enzimología , Secuencia de Aminoácidos , Enfermedades Autoinmunes del Sistema Nervioso/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Malformaciones del Sistema Nervioso/enzimología , Conformación de Ácido Nucleico , Unión Proteica , Ribonucleasa H/aislamiento & purificación , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
17.
Mol Cell Biol ; 30(21): 5123-34, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20823270

RESUMEN

RNase H1 in mammalian cells is present in nuclei and mitochondria. Its absence in mitochondria results in embryonic lethality due to the failure to amplify mitochondrial DNA (mtDNA). Dual localization to mitochondria and nuclei results from differential translation initiation at two in-frame AUGs (M1 and M27) of a single mRNA. Here we show that expression levels of the two isoforms depend on the efficiency of translation initiation at each AUG codon and on the presence of a short upstream open reading frame (uORF) resulting in the mitochondrial isoform being about 10% as abundant as the nuclear form. Translation initiation at the M1 AUG is restricted by the uORF, while expression of the nuclear isoform requires reinitiation of ribosomes at the M27 AUG after termination of uORF translation or new initiation by ribosomes skipping the uORF and the M1 AUG. Such translational organization of RNase H1 allows tight control of expression of RNase H1 in mitochondria, where its excess or absence can lead to cell death, without affecting the expression of the nuclear RNase H1.


Asunto(s)
Codón/genética , Sistemas de Lectura Abierta/genética , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Núcleo Celular/enzimología , ADN Mitocondrial/genética , Humanos , Técnicas In Vitro , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Hígado/enzimología , Ratones , Mitocondrias/enzimología , Modelos Biológicos , Datos de Secuencia Molecular , Iniciación de la Cadena Peptídica Traduccional , Estructura Terciaria de Proteína , ARN Mensajero/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleasa H/química , Homología de Secuencia de Aminoácido
18.
FEBS J ; 276(6): 1494-505, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19228196

RESUMEN

Ribonucleases H are enzymes that cleave the RNA of RNA/DNA hybrids that form during replication and repair and which could lead to DNA instability if they were not processed. There are two main types of RNase H, and at least one of them is present in most organisms. Eukaryotic RNases H are larger and more complex than their prokaryotic counterparts. Eukaryotic RNase H1 has acquired a hybrid binding domain that confers processivity and affinity for the substrate, whereas eukaryotic RNase H2 is composed of three different proteins: the catalytic subunit (2A), similar to the monomeric prokaryotic RNase HII, and two other subunits (2B and 2C) that have no prokaryotic counterparts and as yet unknown functions, but that are necessary for catalysis. In this minireview, we discuss some of the most recent findings on eukaryotic RNases H1 and H2, focusing on the structural data on complexes between human RNase H1 and RNA/DNA hybrids that had provided great detail of how the hybrid binding- and RNase H-domains recognize and cleave the RNA strand of the hybrid substrates. We also describe the progress made in understanding the in vivo function of eukaryotic RNases H. Although prokayotes and some single-cell eukaryotes do not require RNases H for viability, in higher eukaryotes RNases H are essential. Rnaseh1 null mice arrest development around E8.5 because RNase H1 is necessary during embryogenesis for mitochondrial DNA replication. Mutations in any of the three subunits of human RNase H2 cause Aicardi-Goutières syndrome, a human neurological disorder with devastating consequences.


Asunto(s)
Ribonucleasa H/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Conformación Proteica , Ribonucleasa H/química , Ribonucleasa H/genética , Saccharomyces cerevisiae/enzimología , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
19.
Nucleic Acids Res ; 37(1): 96-110, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19015152

RESUMEN

Eukaryotic RNase H2 is a heterotrimeric enzyme. Here, we show that the biochemical composition and stoichiometry of the human RNase H2 complex is consistent with the properties previously deduced from genetic studies. The catalytic subunit of eukaryotic RNase H2, RNASEH2A, is well conserved and similar to the monomeric prokaryotic RNase HII. In contrast, the RNASEH2B and RNASEH2C subunits from human and Saccharomyces cerevisiae share very little homology, although they both form soluble B/C complexes that may serve as a nucleation site for the addition of RNASEH2A to form an active RNase H2, or for interactions with other proteins to support different functions. The RNASEH2B subunit has a PIP-box and confers PCNA binding to human RNase H2. Unlike Escherichia coli RNase HII, eukaryotic RNase H2 acts processively and hydrolyzes a variety of RNA/DNA hybrids with similar efficiencies, suggesting multiple cellular substrates. Moreover, of five analyzed mutations in human RNASEH2B and RNASEH2C linked to Aicardi-Goutières Syndrome (AGS), only one, R69W in the RNASEH2C protein, exhibits a significant reduction in specific activity, revealing a role for the C subunit in enzymatic activity. Near-normal activity of four AGS-related mutant enzymes was unexpected in light of their predicted impairment causing the AGS phenotype.


Asunto(s)
Ribonucleasa H/metabolismo , Secuencia de Aminoácidos , Escherichia coli/enzimología , Escherichia coli/genética , Prueba de Complementación Genética , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutación , Enfermedades del Sistema Nervioso/genética , Poli A/metabolismo , Poli T/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ribonucleasa H/química , Ribonucleasa H/genética , Síndrome
20.
EMBO J ; 27(7): 1172-81, 2008 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-18337749

RESUMEN

Human RNase H1 contains an N-terminal domain known as dsRHbd for binding both dsRNA and RNA/DNA hybrid. We find that dsRHbd binds preferentially to RNA/DNA hybrids by over 25-fold and rename it as hybrid binding domain (HBD). The crystal structure of HBD complexed with a 12 bp RNA/DNA hybrid reveals that the RNA strand is recognized by a protein loop, which forms hydrogen bonds with the 2'-OH groups. The DNA interface is highly specific and contains polar residues that interact with the phosphate groups and an aromatic patch that appears selective for binding deoxyriboses. HBD is unique relative to non-sequence-specific dsDNA- and dsRNA-binding domains because it does not use positive dipoles of alpha-helices for nucleic acid binding. Characterization of full-length enzymes with defective HBDs indicates that this domain dramatically enhances both the specific activity and processivity of RNase H1. Similar activity enhancement by small substrate-binding domains linked to the catalytic domain likely occurs in other nucleic acid enzymes.


Asunto(s)
ADN/metabolismo , Ácidos Nucleicos Heterodúplex/metabolismo , ARN/metabolismo , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Secuencia de Aminoácidos , Animales , Emparejamiento Base , Cristalografía por Rayos X , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA