RESUMEN
BACKGROUND: This study aimed to develop prognostic models for predicting the need for invasive mechanical ventilation (IMV) in intensive care unit (ICU) patients with COVID-19 and compare their performance with the Respiratory rate-OXygenation (ROX) index. METHODS: A retrospective cohort study was conducted using data collected between March 2020 and August 2021 at three hospitals in Rio de Janeiro, Brazil. ICU patients aged 18 years and older with a diagnosis of COVID-19 were screened. The exclusion criteria were patients who received IMV within the first 24 h of ICU admission, pregnancy, clinical decision for minimal end-of-life care and missing primary outcome data. Clinical and laboratory variables were collected. Multiple logistic regression analysis was performed to select predictor variables. Models were based on the lowest Akaike Information Criteria (AIC) and lowest AIC with significant p values. Assessment of predictive performance was done for discrimination and calibration. Areas under the curves (AUC)s were compared using DeLong's algorithm. Models were validated externally using an international database. RESULTS: Of 656 patients screened, 346 patients were included; 155 required IMV (44.8%), 191 did not (55.2%), and 207 patients were male (59.8%). According to the lowest AIC, arterial hypertension, diabetes mellitus, obesity, Sequential Organ Failure Assessment (SOFA) score, heart rate, respiratory rate, peripheral oxygen saturation (SpO2), temperature, respiratory effort signals, and leukocytes were identified as predictors of IMV at hospital admission. According to AIC with significant p values, SOFA score, SpO2, and respiratory effort signals were the best predictors of IMV; odds ratios (95% confidence interval): 1.46 (1.07-2.05), 0.81 (0.72-0.90), 9.13 (3.29-28.67), respectively. The ROX index at admission was lower in the IMV group than in the non-IMV group (7.3 [5.2-9.8] versus 9.6 [6.8-12.9], p < 0.001, respectively). In the external validation population, the area under the curve (AUC) of the ROX index was 0.683 (accuracy 63%), the AIC model showed an AUC of 0.703 (accuracy 69%), and the lowest AIC model with significant p values had an AUC of 0.725 (accuracy 79%). CONCLUSIONS: In the development population of ICU patients with COVID-19, SOFA score, SpO2, and respiratory effort signals predicted the need for IMV better than the ROX index. In the external validation population, although the AUCs did not differ significantly, the accuracy was higher when using SOFA score, SpO2, and respiratory effort signals compared to the ROX index. This suggests that these variables may be more useful in predicting the need for IMV in ICU patients with COVID-19. GOV IDENTIFIER: NCT05663528.
RESUMEN
Background: Lung weight may be measured with quantitative chest computed tomography (CT) in patients with COVID-19 to characterize the severity of pulmonary edema and assess prognosis. However, this quantitative analysis is often not accessible, which led to the hypothesis that specific laboratory data may help identify overweight lungs. Methods: This cross-sectional study was a secondary analysis of data from SARITA2, a randomized clinical trial comparing nitazoxanide and placebo in patients with COVID-19 pneumonia. Adult patients (≥18 years) requiring supplemental oxygen due to COVID-19 pneumonia were enrolled between April 20 and October 15, 2020, in 19 hospitals in Brazil. The weight of the lungs as well as laboratory data [hemoglobin, leukocytes, neutrophils, lymphocytes, C-reactive protein, D-dimer, lactate dehydrogenase (LDH), and ferritin] and 47 additional specific blood biomarkers were assessed. Results: Ninety-three patients were included in the study: 46 patients presented with underweight lungs (defined by ≤0% of excess lung weight) and 47 patients presented with overweight lungs (>0% of excess lung weight). Leukocytes, neutrophils, D-dimer, and LDH were higher in patients with overweight lungs. Among the 47 blood biomarkers investigated, interferon alpha 2 protein was higher and leukocyte inhibitory factor was lower in patients with overweight lungs. According to CombiROC analysis, the combinations of D-dimer/LDH/leukocytes, D-dimer/LDH/neutrophils, and D-dimer/LDH/leukocytes/neutrophils achieved the highest area under the curve with the best accuracy to detect overweight lungs. Conclusion: The combinations of these specific laboratory data: D-dimer/LDH/leukocytes or D-dimer/LDH/neutrophils or D-dimer/LDH/leukocytes/neutrophils were the best predictors of overweight lungs in patients with COVID-19 pneumonia at hospital admission. Clinical trial registration: Brazilian Registry of Clinical Trials (REBEC) number RBR-88bs9x and ClinicalTrials.gov number NCT04561219.
RESUMEN
OBJECTIVES: It is not known how lung injury progression during mechanical ventilation modifies pulmonary responses to prone positioning. We compared the effects of prone positioning on regional lung aeration in late versus early stages of lung injury. DESIGN: Prospective, longitudinal imaging study. SETTING: Research imaging facility at The University of Pennsylvania (Philadelphia, PA) and Medical and Surgical ICUs at Massachusetts General Hospital (Boston, MA). SUBJECTS: Anesthetized swine and patients with acute respiratory distress syndrome (acute respiratory distress syndrome). INTERVENTIONS: Lung injury was induced by bronchial hydrochloric acid (3.5 mL/kg) in 10 ventilated Yorkshire pigs and worsened by supine nonprotective ventilation for 24 hours. Whole-lung CT was performed 2 hours after hydrochloric acid (Day 1) in both prone and supine positions and repeated at 24 hours (Day 2). Prone and supine images were registered (superimposed) in pairs to measure the effects of positioning on the aeration of each tissue unit. Two patients with early acute respiratory distress syndrome were compared with two patients with late acute respiratory distress syndrome, using electrical impedance tomography to measure the effects of body position on regional lung mechanics. MEASUREMENTS AND MAIN RESULTS: Gas exchange and respiratory mechanics worsened over 24 hours, indicating lung injury progression. On Day 1, prone positioning reinflated 18.9% ± 5.2% of lung mass in the posterior lung regions. On Day 2, position-associated dorsal reinflation was reduced to 7.3% ± 1.5% (p < 0.05 vs Day 1). Prone positioning decreased aeration in the anterior lungs on both days. Although prone positioning improved posterior lung compliance in the early acute respiratory distress syndrome patients, it had no effect in late acute respiratory distress syndrome subjects. CONCLUSIONS: The effects of prone positioning on lung aeration may depend on the stage of lung injury and duration of prior ventilation; this may limit the clinical efficacy of this treatment if applied late.
Asunto(s)
Lesión Pulmonar/complicaciones , Posición Prona/fisiología , Adulto , Anciano , Boston , Femenino , Humanos , Estudios Longitudinales , Lesión Pulmonar/diagnóstico por imagen , Lesión Pulmonar/fisiopatología , Masculino , Persona de Mediana Edad , Pennsylvania , Respiración con Presión Positiva/métodos , Estudios Prospectivos , Resultado del TratamientoRESUMEN
Sedation minimization and ventilator liberation protocols improve outcomes but are challenging to implement. We sought to demonstrate proof-of-concept and impact of an electronic application promoting sedation minimization and ventilator liberation. DESIGN: Multi-ICU proof-of-concept study and a single ICU before-after study. SETTING: University hospital ICUs. PATIENTS: Adult patients receiving mechanical ventilation. INTERVENTIONS: An automated application consisting of 1) a web-based dashboard with real-time data on spontaneous breathing trial readiness, sedation depth, sedative infusions, and nudges to wean sedation and ventilatory support and 2) text-message alerts once patients met criteria for a spontaneous breathing trial and spontaneous awakening trial. Pre-intervention, sedation minimization, and ventilator liberation were reviewed daily during a multidisciplinary huddle. Post-intervention, the dashboard was used during the multidisciplinary huddle, throughout the day by respiratory therapists, and text alerts were sent to bedside providers. MEASUREMENTS AND MAIN RESULTS: We enrolled 115 subjects in the proof-of-concept study. Spontaneous breathing trial alerts were accurate (98.3%), usually sent while patients were receiving mandatory ventilation (88.5%), and 61.9% of patients received concurrent spontaneous awakening trial alerts. We enrolled 457 subjects in the before-after study, 221 pre-intervention and 236 post-intervention. After implementation, patients were 28% more likely to be extubated (hazard ratio, 1.28; 95% CI, 1.01-1.63; p = 0.042) and 31% more likely to be discharged from the ICU (hazard ratio, 1.31; 95% CI, 1.03-1.67; p = 0.027) at any time point. After implementation, the median duration of mechanical ventilation was 2.20 days (95% CI, 0.09-4.31 d; p = 0.042) shorter and the median ICU length of stay was 2.65 days (95% CI, 0.13-5.16 d; p = 0.040) shorter, compared with the expected durations without the application. CONCLUSIONS: Implementation of an electronic dashboard and alert system promoting sedation minimization and ventilator liberation was associated with reductions in the duration of mechanical ventilation and ICU length of stay.