Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(11): 5102-5107, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30792350

RESUMEN

Circadian dysfunction is a common attribute of many neurodegenerative diseases, most of which are associated with neuroinflammation. Circadian rhythm dysfunction has been associated with inflammation in the periphery, but the role of the core clock in neuroinflammation remains poorly understood. Here we demonstrate that Rev-erbα, a nuclear receptor and circadian clock component, is a mediator of microglial activation and neuroinflammation. We observed time-of-day oscillation in microglial immunoreactivity in the hippocampus, which was disrupted in Rev-erbα-/- mice. Rev-erbα deletion caused spontaneous microglial activation in the hippocampus and increased expression of proinflammatory transcripts, as well as secondary astrogliosis. Transcriptomic analysis of hippocampus from Rev-erbα-/- mice revealed a predominant inflammatory phenotype and suggested dysregulated NF-κB signaling. Primary Rev-erbα-/- microglia exhibited proinflammatory phenotypes and increased basal NF-κB activation. Chromatin immunoprecipitation revealed that Rev-erbα physically interacts with the promoter regions of several NF-κB-related genes in primary microglia. Loss of Rev-erbα in primary astrocytes had no effect on basal activation but did potentiate the inflammatory response to lipopolysaccharide (LPS). In vivo, Rev-erbα-/- mice exhibited enhanced hippocampal neuroinflammatory responses to peripheral LPS injection, while pharmacologic activation of Rev-erbs with the small molecule agonist SR9009 suppressed LPS-induced hippocampal neuroinflammation. Rev-erbα deletion influenced neuronal health, as conditioned media from Rev-erbα-deficient primary glial cultures exacerbated oxidative damage in cultured neurons. Rev-erbα-/- mice also exhibited significantly altered cortical resting-state functional connectivity, similar to that observed in neurodegenerative models. Our results reveal Rev-erbα as a pharmacologically accessible link between the circadian clock and neuroinflammation.


Asunto(s)
Relojes Circadianos , Inflamación/metabolismo , Inflamación/patología , Neuronas/metabolismo , Neuronas/patología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Muerte Celular , Eliminación de Gen , Gliosis/patología , Hipocampo/patología , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , FN-kappa B/metabolismo , Red Nerviosa/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/deficiencia , Transducción de Señal
2.
Cell Rep ; 25(1): 1-9.e5, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30282019

RESUMEN

Circadian clock dysfunction is a common symptom of aging and neurodegenerative diseases, though its impact on brain health is poorly understood. Astrocyte activation occurs in response to diverse insults and plays a critical role in brain health and disease. We report that the core circadian clock protein BMAL1 regulates astrogliosis in a synergistic manner via a cell-autonomous mechanism and a lesser non-cell-autonomous signal from neurons. Astrocyte-specific Bmal1 deletion induces astrocyte activation and inflammatory gene expression in vitro and in vivo, mediated in part by suppression of glutathione-S-transferase signaling. Functionally, loss of Bmal1 in astrocytes promotes neuronal death in vitro. Our results demonstrate that the core clock protein BMAL1 regulates astrocyte activation and function in vivo, elucidating a mechanism by which the circadian clock could influence many aspects of brain function and neurological disease.


Asunto(s)
Astrocitos/metabolismo , Relojes Circadianos/fisiología , Factores de Transcripción ARNTL , Animales , Astrocitos/citología , Muerte Celular/fisiología , Relojes Circadianos/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Transfección
3.
J Exp Med ; 215(4): 1059-1068, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29382695

RESUMEN

Nighttime restlessness and daytime drowsiness are common and early symptoms of Alzheimer's Disease (AD). This symptomology implicates dysfunctional biological timing, yet the role of the circadian system in AD pathogenesis is unknown. To evaluate the role of the circadian clock in amyloid-ß (Aß) dynamics and pathology, we used a mouse model of ß-amyloidosis and disrupted circadian clock function either globally or locally in the brain via targeted deletion of the core clock gene Bmal1 Our results demonstrate that loss of central circadian rhythms leads to disruption of daily hippocampal interstitial fluid Aß oscillations and accelerates amyloid plaque accumulation, whereas loss of peripheral Bmal1 in the brain parenchyma increases expression of Apoe and promotes fibrillar plaque deposition. These results provide evidence that both central circadian rhythms and local clock function influence Aß dynamics and plaque formation and demonstrate mechanisms by which poor circadian hygiene may directly influence AD pathogenesis.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Relojes Circadianos , Factores de Transcripción ARNTL/metabolismo , Animales , Apolipoproteínas E/metabolismo , Ritmo Circadiano , Líquido Extracelular/metabolismo , Eliminación de Gen , Hipocampo/metabolismo , Ratones Noqueados , Núcleo Supraquiasmático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA