Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202404348, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923429

RESUMEN

As ammonia continues to gain more and more interest as a promising hydrogen carrier compound, so does the electrochemical ammonia oxidation reaction (AmOR). To avoid the liberation of H2 in a reverse Haber-Bosch reaction under release of the energetically more favorable N2, we propose the oxidation of ammonia to value-added nitrite (NO2 -), which is usually obtained during the Ostwald process. We investigated the anodic oxidation of gaseous ammonia directly supplied to a gas diffusion electrode (GDE) using a variety of compositionally different multi-metal catalysts coated on Ni foam under the simultaneous formation of H2 at the cathode. This will double the amount of H2 per ammonia molecule while applying a lower overpotential than that required for water electrolysis (1.4-1.8 V vs. RHE at 50 mA ⋅ cm-2). A selectivity study demonstrated that some of the catalyst compositions were able to produce significant amounts of NO2 -, and further investigations using the most promising catalyst composition Nif_AlCoCrCuFe integrated within a GDE demonstrated up to 88 % Faradaic efficiency for NO2 - at the anode coupled to close to 100 % Faradaic efficiency for the cathodic H2 production.

2.
Angew Chem Int Ed Engl ; 62(12): e202218493, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36640442

RESUMEN

Multi-metal electrocatalysts provide nearly unlimited catalytic possibilities arising from synergistic element interactions. We propose a polymer/metal precursor spraying technique that can easily be adapted to produce a large variety of compositional different multi-metal catalyst materials. To demonstrate this, 11 catalysts were synthesized, characterized, and investigated for the oxygen evolution reaction (OER). Further investigation of the most active OER catalyst, namely CoNiFeMoCr, revealed a polycrystalline structure, and operando Raman measurements indicate that multiple active sites are participating in the reaction. Moreover, Ni foam-supported CoNiFeMoCr electrodes were developed and applied for water splitting in flow-through electrolysis cells with electrolyte gaps and in zero-gap membrane electrode assembly (MEA) configurations. The proposed alkaline MEA-type electrolyzers reached up to 3 A cm-2 , and 24 h measurements demonstrated no loss of current density of 1 A cm-2 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA