RESUMEN
Background: Bacteriophage therapy is becoming part of mainstream Western medicine since antibiotics of clinical use tend to fail. It involves applying lytic bacteriophages that self-replicate and induce cell lysis, thus killing their hosts. Nevertheless, bacterial killing promotes the selection of resistant clones which sometimes may exhibit a decrease in bacterial virulence or antibiotic resistance. Methods: In this work, we studied the Pseudomonas aeruginosa lytic phage φDCL-PA6 and its variant φDCL-PA6α. Additionally, we characterized and evaluated the production of virulence factors and the virulence in a Galleria mellonella model of resistant mutants against each phage for PA14 and two clinical strains. Results: Phage φDCL-PA6α differs from the original by only two amino acids: one in the baseplate wedge subunit and another in the tail fiber protein. According to genomic data and cross-resistance experiments, these changes may promote the change of the phage receptor from the O-antigen to the core lipopolysaccharide. Interestingly, the host range of the two phages differs as determined against the Pseudomonas aeruginosa reference strains PA14 and PAO1 and against nine multidrug-resistant isolates from ventilator associated pneumonia. Conclusions: We show as well that phage resistance impacts virulence factor production. Specifically, phage resistance led to decreased biofilm formation, swarming, and type III secretion; therefore, the virulence towards Galleria mellonella was dramatically attenuated. Furthermore, antibiotic resistance decreased for one clinical strain. Our study highlights important potential advantages of phage therapy's evolutionary impact that may be exploited to generate robust therapy schemes.
Asunto(s)
Bacteriófagos , Mariposas Nocturnas , Terapia de Fagos , Fagos Pseudomonas , Animales , Virulencia , Pseudomonas aeruginosa , Fagos Pseudomonas/genética , Factores de Virulencia/genética , Farmacorresistencia Microbiana , Antibacterianos/farmacologíaRESUMEN
Pseudomonas aeruginosa is a primary bacterial model to study cooperative behaviors because it yields exoproducts such as siderophores and exoproteases that act as public goods and can be exploited by selfish nonproducers behaving as social cheaters. Iron-limited growth medium, mainly casamino acids medium supplemented with transferrin, is typically used to isolate and study nonproducer mutants of the siderophore pyoverdine. However, using a protein as the iron chelator could inadvertently select mutants unable to produce exoproteases, since these enzymes can degrade the transferrin to facilitate iron release. Here we investigated the evolutionary dynamics of pyoverdine and exoprotease production in media in which iron was limited by using either transferrin or a cation chelating resin. We show that concomitant loss of pyoverdine and exoprotease production readily develops in media containing transferrin, whereas only pyoverdine loss emerges in medium treated with the resin. Characterization of exoprotease- and pyoverdine-less mutants revealed loss in motility, different mutations, and large genome deletions (13-33 kb) including Quorum Sensing (lasR, rsal, and lasI) and flagellar genes. Our work shows that using transferrin as an iron chelator imposes simultaneous selective pressure for the loss of pyoverdine and exoprotease production. The unintended effect of transferrin uncovered by our experiments can help to inform the design of similar studies.
Asunto(s)
Hierro , Pseudomonas aeruginosa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Exopeptidasas , Hierro/metabolismo , Oligopéptidos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sideróforos , TransferrinaRESUMEN
In this study, we describe seven vegetative phage genomes homologous to the historic phage B3 that infect Pseudomonas aeruginosa Like other phage groups, the B3-like group contains conserved (core) and variable (accessory) open reading frames (ORFs) grouped at fixed regions in their genomes; however, in either case, many ORFs remain without assigned functions. We constructed lysogens of the seven B3-like phages in strain Ps33 of P. aeruginosa, a novel clinical isolate, and assayed the exclusion phenotype against a variety of temperate and virulent superinfecting phages. In addition to the classic exclusion conferred by the phage immunity repressor, the phenotype observed in B3-like lysogens suggested the presence of other exclusion genes. We set out to identify the genes responsible for this exclusion phenotype. Phage Ps56 was chosen as the study subject since it excluded numerous temperate and virulent phages. Restriction of the Ps56 genome, cloning of several fragments, and resection of the fragments that retained the exclusion phenotype allowed us to identify two core ORFs, so far without any assigned function, as responsible for a type of exclusion. Neither gene expressed separately from plasmids showed activity, but the concurrent expression of both ORFs is needed for exclusion. Our data suggest that phage adsorption occurs but that phage genome translocation to the host's cytoplasm is defective. To our knowledge, this is the first report on this type of exclusion mediated by a prophage in P. aeruginosaIMPORTANCEPseudomonas aeruginosa is a Gram-negative bacterium frequently isolated from infected immunocompromised patients, and the strains are resistant to a broad spectrum of antibiotics. Recently, the use of phages has been proposed as an alternative therapy against multidrug-resistant bacteria. However, this approach may present various hurdles. This work addresses the problem that pathogenic bacteria may be lysogenized by phages carrying genes encoding resistance against secondary infections, such as those used in phage therapy. Discovering phage genes that exclude superinfecting phages not only assigns novel functions to orphan genes in databases but also provides insight into selection of the proper phages for use in phage therapy.
Asunto(s)
ADN Viral , Genes Virales , Sistemas de Lectura Abierta , Profagos , Fagos Pseudomonas , Pseudomonas aeruginosa , ADN Viral/genética , ADN Viral/metabolismo , Profagos/genética , Profagos/metabolismo , Fagos Pseudomonas/genética , Fagos Pseudomonas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/virologíaRESUMEN
The repurposing of gallium nitrate as an antibacterial, a drug used previously for the treatment of hypercalcemia, is a plausible alternative to combat infections by Pseudomonas aeruginosa, since it has antipseudomonal properties in vitro and in vivo in animal models and in human lung infections. Furthermore, gallium nitrate tolerance in clinical isolates is very rare. Nevertheless, studies on the reference strains PA14 and PAO1 show that resistance against gallium nitrate is achieved by decreasing gallium intracellular levels by increasing the production of pyocyanin. In this work, we induced resistance in a cystic fibrosis P. aeruginosa isolate and explored its resistance mechanisms. This isolated strain, INP-58M, was not a pyocyanin producer, and its pyoverdine levels remained unchanged upon gallium addition. However, it showed higher activities of NADPH-producing enzymes and the antioxidant enzyme SOD when gallium was added, which suggests a better antioxidant response. Remarkably, gallium intracellular levels in the resistant isolate were higher than those of the parental strain at 20 h but lower after 24 h of culture, suggesting that this strain is capable of gallium efflux.
Asunto(s)
Antibacterianos/farmacología , Fibrosis Quística/microbiología , Galio/farmacología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Reposicionamiento de Medicamentos , Farmacorresistencia Bacteriana , Humanos , Oligopéptidos/biosíntesis , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/metabolismo , Piocianina/biosíntesisRESUMEN
Quorum sensing (QS) in Pseudomonas aeruginosa coordinates the expression of virulence factors, some of which are used as public goods. Since their production is a cooperative behavior, it is susceptible to social cheating in which non-cooperative QS deficient mutants use the resources without investing in their production. Nevertheless, functional QS systems are abundant; hence, mechanisms regulating the amount of cheating should exist. Evidence that demonstrates a tight relationship between QS and the susceptibility of bacteria against the attack of lytic phages is increasing; nevertheless, the relationship between temperate phages and QS has been much less explored. Therefore, in this work, we studied the effects of having a functional QS system on the susceptibility to temperate bacteriophages and how this affects the bacterial and phage dynamics. We find that both experimentally and using mathematical models, that the lysogenic bacteriophages D3112 and JBD30 select QS-proficient P. aeruginosa phenotypes as compared to the QS-deficient mutants during competition experiments with mixed strain populations in vitro and in vivo in Galleria mellonella, in spite of the fact that both phages replicate better in the wild-type background. We show that this phenomenon restricts social cheating, and we propose that temperate phages may constitute an important selective pressure toward the conservation of bacterial QS.
RESUMEN
Bacteriophages (phages) are estimated to be the most abundant and diverse entities in the biosphere harboring vast amounts of novel genetic information. Despite the genetic diversity observed, many phages share common features, such as virion morphology, genome size and organization, and can readily be associated with clearly defined phage groups. However, other phages display unique genomes or, alternatively, mosaic genomes composed of regions that share homology with those of phages of diverse origins; thus, their relationships cannot be easily assessed. In this work, we present a functional and comparative genomic analysis of Pseudomonas aeruginosa phage PaMx25, a virulent member of the Siphoviridae family. The genomes of PaMx25 and a highly homologous phage NP1, bore sequence homology and synteny with the genomes of phages that infect hosts different than Pseudomonas. In order to understand the relationship of the PaMx25 genome with that of other phages, we employed several computational approaches. We found that PaMx25 and NP1 effectively bridged several phage groups. It is expected that as more phage genomes become available, more gaps will be filled, blurring the boundaries that currently separate phage groups.
Asunto(s)
Genoma Viral , Fagos Pseudomonas/clasificación , Pseudomonas aeruginosa/virología , Siphoviridae/clasificación , Variación Genética , Filogenia , Proteómica , Fagos Pseudomonas/genética , Siphoviridae/genética , SinteníaRESUMEN
Previously, a collection of virulent phages infecting Pseudomonas aeruginosa was isolated from open water reservoirs and residual waters. Here, we described the comparative genomics of a set of five related phages from the collection, the physical structure of the genome, the structural proteomics of the virion, and the transcriptional program of archetypal phage PaMx41. The phage genomes were closely associated with each other and with those of two other P. aeruginosa phages, 119X and PaP2, which were previously filed in the databases. Overall, the genomes were approximately 43 kb, harboring 53 conserved open reading frames (ORFs) and three short ORFs in indel regions and containing 45% GC content. The genome of PaMx41 was further characterized as a linear, terminally redundant DNA molecule. A total of 16 ORFs were associated with putative functions, including nucleic acid metabolism, morphogenesis, and lysis, and eight virion proteins were identified through mass spectrometry. However, the coding sequences without assigned functions represent 70% of the ORFs. The PaMx41 transcription program was organized in early, middle, and late expressed genomic modules, which correlated with regions containing functionally related genes. The high genomic conservation among these distantly isolated phages suggests that these viruses undergo selective pressure to remain unchanged. The 119X lineage represents a unique set of phages that corresponds to a novel phage group. The features recognized in the genomes and the broad host range of clinical strains suggest that these phages are candidates for therapy applications. IMPORTANCE: Pseudomonas aeruginosa is an opportunistic pathogen that causes stubborn nosocomial infections that are frequently resistant to multiple antibiotics. Bacterial viruses (bacteriophages or phages) represent a natural mechanism for pathogenic bacterial control. Here, a group of virulent phages, previously shown to infect a broad range of clinical P. aeruginosa strains, was characterized at the genomic and molecular levels. These phages belong to a unique and tightly related group. In addition, we conducted a transcriptional study of an archetypal phage of this group to characterize the role of many unknown coding sequences based on expression temporalities. These results contribute to our knowledge of 119X-like phages and, in general, provide information concerning P. aeruginosa podophage diversity and lytic cycles.