Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Braz J Microbiol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225874

RESUMEN

Klebsiella pneumoniae is an important pathogen that causes several human infections, which is currently among the main bacterial species of clinical importance. Given the importance of understanding the characteristics of this pathogen and its evolutionary aspects, in this study, we sought to characterize strains of K. pneumoniae recovered in the 1980s and 1990s in São Paulo, Brazil. Our analyses included 48 strains recovered from diarrheagenic stools and extraintestinal infections. These strains were submitted to screening for virulence and ESßL-encoding genes, antimicrobial susceptibility tests, biofilm formation, and hypermucosity and hemolytic activity tests. Our results revealed that among the studied virulence genes, the most frequent were entB (100%), followed by iutA (100%), mrkD (98%), and ycfM (72%). Phenotypic tests revealed that the strains were non- hemolytic, and two strains were positive for the hypermucoviscosity phenotype but did not have the genetic markers associated with this phenotype. Furthermore, 17% of the isolates proved to be strong biofilm producers. Antimicrobial susceptibility testing demonstrated that most strains were susceptible to the tested antimicrobials, with the exception of five isolates that produced CTX-M-2. Our findings indicate that the collection of strains studied showed variability in virulence factors, as well as biofilm production. Still, a minority of the strains showed clinically significant resistance mechanisms. As far as we know, this is the oldest collection of K. pneumoniae studied in the country.Keywords: Bacterial virulence; Ancient bacterial strains; Enterobacterales; Bacterial infection; Diarrhea.

2.
Microbiol Spectr ; : e0211324, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283121

RESUMEN

Metagenome-assembled genomes (MAGs) have contributed to identifying non-culturable microorganisms and understanding their ecological functions. MAGs offer an advantage in investigating sporulation-associated genes, especially given the difficulty of isolating many species residing in the gut microbiota of multiple hosts. Bacterial sporulation is a key survival mechanism with implications for pathogenicity and biotechnology. Here, we investigate MAGs from vertebrate hosts, emphasizing taxonomic identification and identifying sporulation-associated genes in potential novel species within the Firmicutes phylum. We identified potential new species in the classes Clostridia (Borkfalkiaceae, Lachnospiraceae, Monoglobaceae, and Oscillospiraceae families) and Bacilli (Bacillaceae and Erysipelotrichaceae families) through phylogenetic and functional pathway analyses, highlighting their sporulation potential. Our study covers 146 MAGs, 124 of them without refined taxonomic assignments at the family level. We found that Clostridia and Bacilli have unique sporulation gene profiles in the refined family MAGs for cattle, swine, poultry, and human hosts. The presence of genes related to Spo0A regulon, engulfment, and spore cortex in MAGs underscores fundamental mechanisms in sporulation processes in currently uncharacterized species with sporulation potential from metagenomic dark matter. Furthermore, genomic analyses predict sporulation potential based on gene presence, genome size, and metabolic pathways involved in spore formation. We emphasize MAGs covering families not yet characterized through the phylogenetic analysis, and with extensive potential for spore-forming bacteria within Clostridia, Bacilli, UBA4882, and UBA994 classes. These findings contribute to exploring spore-forming bacteria, which provides evidence for novel species diversity in multiple hosts, their adaptive strategies, and potential applications in biotechnology and host health.IMPORTANCESpores are essential for bacterial survival in harsh environments, facilitating their persistence and adaptation. Exploring sporulation-associated genes in metagenome-assembled genomes (MAGs) from different hosts contributes to clinical and biotechnological domains. Our study investigated the extent of genes associated with bacterial sporulation in MAGs from poultry, swine, cattle, and humans, revealing these genes in uncultivated bacteria. We identified potential novel Firmicutes species with sporulation capabilities through phylogenetic and functional analyses. Notably, MAGs belonging to Clostridia, Bacilli, and unknown classes, namely UBA4882 and UBA994, remained uncharacterized at the family level, which raises the hypothesis that sporulation would also be present in these genomes. These findings contribute to our understanding of microbial adaptation and have implications for microbial ecology, underlining the importance of sporulation in Firmicutes across different hosts. Further studies into novel species and their sporulation capability can contribute to bacterial maintenance mechanisms in various organisms and their applications in biotechnology studies.

3.
Mycoses ; 67(8): e13786, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39162057

RESUMEN

OBJECTIVES: Candida spp. is an opportunistic pathogen that causes superficial and invasive infections with nosocomial outbreaks without strict hygiene protocols. Herein, we assessed oral colonisation by Candida spp. in 209 Intensive Care Unit (ICU) patients between July 2021 and April 2022, conducting clinical, epidemiological, and microbiological characterisation of those developing oral or invasive candidiasis. METHODS: Initial oral swabs were collected within 24 h of admission in the ICU, followed by collections on Days 2, 4, 6 and 8. Swabs from denture-wearing patients, abiotic surfaces, healthcare professionals' hands, and retroauricular regions were also obtained. Recovered yeasts and filamentous fungi were identified using MALDI-TOF MS and morphological characteristics, respectively. Genetic similarity of Candida spp. isolates was evaluated using Amplified fragment length polymorphism (AFLP), and the antifungal susceptibility profile was determined by broth microdilution. RESULTS: In the study, 64.11% of patients were orally colonised by Candida spp. Of these, 80.59% were colonised within the first 24 h. Oral colonisation also occurred on subsequent days: 50%/Day 2, 26.92%/Day 4, and 11.53%/Days 6 and 8. Of the patients, 8.61% had oral candidiasis, mainly pseudomembranous. Among orally colonised patients, 2.23% developed invasive candidiasis. Besides, 89.47% of healthcare professionals evaluated were colonised. MALDI-TOF MS identified different yeast species, and C. albicans (45.34%), C. tropicalis (15.7%), and C. parapsilosis sensu stricto (9.88%) were the most prevalent. AFLP analysis indicated a high genetic correlation (≥97%) between C. parapsilosis sensu stricto isolates from patients and professionals. Three resistant C. albicans isolates were also found. CONCLUSION: This study reported a diversity of yeast and filamentous fungi species in ICU patients and highlighted early Candida spp. colonisation risks for invasive candidiasis, as well as the potential horizontal transmission in the nosocomial setting, emphasising the need for effective infection control measures.


Asunto(s)
Candida , Personal de Salud , Unidades de Cuidados Intensivos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Candida/genética , Candida/aislamiento & purificación , Candida/efectos de los fármacos , Candida/clasificación , Anciano , Adulto , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Pruebas de Sensibilidad Microbiana , Candidiasis Bucal/microbiología , Candidiasis Bucal/epidemiología , Candidiasis Invasiva/microbiología , Candidiasis Invasiva/epidemiología , Anciano de 80 o más Años , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Boca/microbiología
4.
Braz J Microbiol ; 55(3): 2693-2703, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38913253

RESUMEN

OBJECTIVE: This study aims to analyze the prevalence of Candida spp. colonization in oral leukoplakia and oral lichen planus lesions, verify the influence of systemic and local factors, besides identify and determine the in vitro antifungal susceptibility profile of Candida species. MATERIALS AND METHODS: Samples were collected by swabbing from oral lesions and healthy mucosa and cultured on Sabouraud Dextrose and CHROMagar® Candida plates. Species identification was confirmed with MALDI-TOF MS analysis. RESULTS: Candida spp. was found in 36.8% of cases of oral leukoplakia and 18.2% of cases of oral lichen planus. Candida albicans was the only species found in oral lichen planus lesions (n = 2, 100%) and the most prevalent in oral leukoplakia (n = 5, 76.4%). Among the non-albicans Candida species found in oral leukoplakia were C. parapsilosis (n = 2, 25.5%) and C. tropicalis (n = 1, 14.1%). Candida isolates were susceptible to all antifungals tested. CONCLUSION: C. albicans was the most commonly found species in the studied lesions. No correlation was found between systemic and local factors with positive cases of oral lichen planus. However, smoking and alcohol consumption may be associated with positive cases of oral leukoplakia, especially the non-homogeneous clinical form. In addition, there is a possible predisposition to associated Candida colonization in cases of epithelial dysplasia found in oral leukoplakia. The antifungal medications tested showed excellent efficacy against isolates.


Asunto(s)
Antifúngicos , Candida , Leucoplasia Bucal , Liquen Plano Oral , Pruebas de Sensibilidad Microbiana , Humanos , Liquen Plano Oral/microbiología , Liquen Plano Oral/patología , Leucoplasia Bucal/microbiología , Leucoplasia Bucal/patología , Candida/efectos de los fármacos , Candida/aislamiento & purificación , Candida/clasificación , Masculino , Persona de Mediana Edad , Femenino , Antifúngicos/farmacología , Adulto , Anciano , Candidiasis Bucal/microbiología , Adulto Joven , Prevalencia
5.
J Glob Antimicrob Resist ; 38: 302-305, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852850

RESUMEN

OBJECTIVE: Despite the increasing reports of blaNDM in Enterobacterales in Brazil, comprehensive whole genome sequencing (WGS) data remain scarce. To address this knowledge gap, our study focuses on the characterization of the genome of an New Delhi Metallo-ß-lactamase (NDM)-1-producing Klebsiella quasipneumoniae subsp. quasipneumoniae (KQPN) clinical strain isolated in Brazil. METHODS: The antimicrobial susceptibility profile of the A-73.113 strain was performed by agar dilution or broth microdilution following the Brazilian Antimicrobial Susceptibility Testing Committee/European Committee on Antimicrobial Susceptibility Testing recommendations. WGS was performed using the Illumina® NextSeq platform and the generated reads were assembled using the SPAdes software. The sequences obtained were submitted to the bioinformatics pipelines to determine the sequence type, resistome, plasmidome, and virulome. RESULTS: The A-73.113 strain was identified as KQPN and was susceptible to polymyxins (MICs, ≤0.25 µg/mL), tigecycline (MIC, 0.5 µg/mL), ciprofloxacin (MIC, 0.5 µg/mL), and levofloxacin (MIC, 1 µg/mL). WGS analysis revealed the presence of genes conferring resistance to ß-lactams (blaNDM-1, blaCTX-M-15, blaOXA-9, blaOKP-A-5, blaTEM-1), aminoglycosides [aph(3')-VI, aadA1, aac(6')-Ib], and fluoroquinolones (oqxAB, qnrS1, aac(6')-Ib-cr]. Additionally, the presence of the plasmid replicons Col(pHAD28), IncFIA(HI1), IncFIB(K) (pCAV1099-114), IncFIB(pQil), and IncFII(K), as well as virulence-encoding genes fimABCDEFGHIK (type 1 fimbria), pilW (type IV pili), iutA (aerobactin), entABCDEFS/fepABCDG/fes (Ent siderophores), iroE (salmochelin), and allABCDRS (allantoin utilization) was verified. Furthermore, we found that the A-73.113 strain belongs to ST1040. CONCLUSIONS: Here we report the genomic characteristics of an NDM-1-producing KQPN ST1040 strain isolated from blood cultures in Brazil. These data will enhance our comprehension of how this species contributes to the acquisition and dissemination of blaNDM-1 in Brazilian nosocomial settings.


Asunto(s)
Antibacterianos , Genoma Bacteriano , Infecciones por Klebsiella , Klebsiella , Pruebas de Sensibilidad Microbiana , Plásmidos , Secuenciación Completa del Genoma , beta-Lactamasas , beta-Lactamasas/genética , Humanos , Klebsiella/genética , Klebsiella/efectos de los fármacos , Klebsiella/aislamiento & purificación , Klebsiella/enzimología , Antibacterianos/farmacología , Infecciones por Klebsiella/microbiología , Plásmidos/genética , Brasil , Farmacorresistencia Bacteriana Múltiple/genética
6.
Int J Food Microbiol ; 418: 110726, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38704995

RESUMEN

Pet food have been considered as possible vehicles of bacterial pathogens. The sudden boom of the pet food industry due to the worldwide increase in companion animal ownership calls for pet food investigations. Herein, this study aimed to determine the frequency, antimicrobial susceptibility profile, and molecular characteristics of coagulase-negative staphylococci (CoNS) in different pet food brands in Brazil. Eighty-six pet food packages were screened for CoNS. All isolates were identified at species level by MALDI-TOF MS and species-specific PCR. Antimicrobial susceptibility testing was performed by disc diffusion and broth microdilution (vancomycin and teicoplanin only) methods. The D-test was used to screen for inducible clindamycin phenotype (MLS-B). SCCmec typing and detection of mecA, vanA, vanB, and virulence-encoding genes were done by PCR. A total of 16 (18.6 %) CoNS isolates were recovered from pet food samples. Isolates were generally multidrug-resistant (MDR). All isolates were completely resistant (100 %) to penicillin. Resistances (12.5 % - 75 %) were also observed for fluoroquinolones, sulfamethoxazole-trimethoprim, tetracycline, rifampicin, erythromycin, and tobramycin. Isolates were susceptible to vancomycin (MICs <0.25-1 µg/mL) and teicoplanin (MICs <0.25-4 µg/mL). Intriguingly, 3/8 (37.5 %) CoNS isolates with the ERYRCLIS antibiotype expressed MLS-B phenotype. All isolates harboured blaZ gene. Seven (43.8 %) isolates carried mecA; and among them, the SCCmec Type III was the most frequent (n = 5/7; 71.4 %). Isolates also harboured seb, see, seg, sej, sem, etb, tsst, pvl, and hla toxin virulence-encoding genes (6.3 % - 25 %). A total of 12/16 (75 %) isolates were biofilm producers, while the icaAB gene was detected in an S. pasteuri isolate. Herein, it is shown that pet food is a potential source of clinically important Gram-positive bacterial pathogens. To the best of our knowledge, this is the first report of MLS-B phenotype and MR-CoNS in pet food in Latin America.


Asunto(s)
Antibacterianos , Clindamicina , Coagulasa , Pruebas de Sensibilidad Microbiana , Staphylococcus , Staphylococcus/efectos de los fármacos , Staphylococcus/genética , Staphylococcus/aislamiento & purificación , Brasil , Antibacterianos/farmacología , Coagulasa/metabolismo , Animales , Clindamicina/farmacología , Meticilina/farmacología , Alimentación Animal/microbiología , Microbiología de Alimentos , Mascotas/microbiología , Farmacorresistencia Bacteriana Múltiple/genética
7.
Chemosphere ; 357: 141918, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614394

RESUMEN

Aeromonas spp. are frequently encountered in aquatic environments, with Aeromonas veronii emerging as an opportunistic pathogen causing a range of diseases in both humans and animals. Recent reports have raised public health concerns due to the emergence of multidrug-resistant Aeromonas spp. This is particularly noteworthy as these species have demonstrated the ability to acquire and transmit antimicrobial resistance genes (ARGs). In this study, we report the genomic and phenotypic characteristics of the A. veronii TR112 strain, which harbors a novel variant of the Vietnamese Extended-spectrum ß-lactamase-encoding gene, blaVEB-28, and two mcr variants recovered from an urban river located in the Metropolitan Region of São Paulo, Brazil. A. veronii TR112 strain exhibited high minimum inhibitory concentrations (MICs) for ceftazidime (64 µg/mL), polymyxin (8 µg/mL), and ciprofloxacin (64 µg/mL). Furthermore, the TR112 strain demonstrated adherence to HeLa and Caco-2 cells within 3 h, cytotoxicity to HeLa cells after 24 h of interaction, and high mortality rates to the Galleria mellonella model. Genomic analysis showed that the TR112 strain belongs to ST257 and presented a range of ARGs conferring resistance to ß-lactams (blaVEB-28, blaCphA3, blaOXA-912) and polymyxins (mcr-3 and mcr-3.6). Additionally, we identified a diversity of virulence factor-encoding genes, including those encoding mannose-sensitive hemagglutinin (Msh) pilus, polar flagella, type IV pili, type II secretion system (T2SS), aerolysin (AerA), cytotoxic enterotoxin (Act), hemolysin (HlyA), hemolysin III (HlyIII), thermostable hemolysin (TH), and capsular polysaccharide (CPS). In conclusion, our findings suggest that A. veronii may serve as an environmental reservoir for ARGs and virulence factors, highlighting its importance as a potential pathogen in public health.


Asunto(s)
Aeromonas veronii , Antibacterianos , Pruebas de Sensibilidad Microbiana , Ríos , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Humanos , Antibacterianos/farmacología , Ríos/microbiología , Aeromonas veronii/genética , Aeromonas veronii/aislamiento & purificación , Aeromonas veronii/efectos de los fármacos , Brasil , Células HeLa , Células CACO-2 , Animales , Farmacorresistencia Bacteriana Múltiple/genética
8.
Sci Rep ; 14(1): 9383, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654061

RESUMEN

Brazil is recognized for its biodiversity and the genetic variability of its organisms. This genetic variability becomes even more valuable when it is properly documented and accessible. Understanding bacterial diversity through molecular characterization is necessary as it can improve patient treatment, reduce the length of hospital stays and the selection of resistant bacteria, and generate data for health and epidemiological surveillance. In this sense, in this study, we aimed to understand the biodiversity and molecular epidemiology of carbapenem-resistant bacteria in clinical samples recovered in the state of Rondônia, located in the Southwest Amazon region. Retrospective data from the Central Public Health Laboratories (LACEN/RO) between 2018 and 2021 were analysed using the Laboratory Environment Manager Platform (GAL). Seventy-two species with carbapenem resistance profiles were identified, of which 25 species carried at least one gene encoding carbapenemases of classes A (blaKPC-like), B (blaNDM-like, blaSPM-like or blaVIM-like) and D (blaOXA-23-like, blaOXA-24-like, blaOXA-48-like, blaOXA-58-like or blaOXA-143-like), among which we will highlight Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Serratia marcescens, and Providencia spp. With these results, we hope to contribute to the field by providing epidemiological molecular data for state surveillance on bacterial resistance and assisting in public policy decision-making.


Asunto(s)
Biodiversidad , Carbapenémicos , beta-Lactamasas , Brasil , Humanos , Carbapenémicos/farmacología , beta-Lactamasas/genética , Estudios Retrospectivos , Antibacterianos/farmacología , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/aislamiento & purificación , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/clasificación , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Farmacorresistencia Bacteriana/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación
10.
One Health ; 17: 100591, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37388190

RESUMEN

Serratia marcescens is a Gram-negative bacterium presenting intrinsic resistance to polymyxins that has emerged as an important human pathogen. Although previous studies reported the occurrence of multidrug-resistance (MDR) S. marcescens isolates in the nosocomial settings, herein, we described isolates of this extensively drug-resistant (XDR) species recovered from stool samples of food-producing animals in the Brazilian Amazon region. Three carbapenem-resistant S. marcescens strains were recovered from stool samples of poultry and cattle. Genetic similarity analysis showed that these strains belonged to the same clone. Whole-genome sequencing of a representative strain (SMA412) revealed a resistome composed of genes encoding resistance to ß-lactams [blaKPC-2, blaSRT-2], aminoglycosides [aac(6')-Ib3, aac(6')-Ic, aph(3')-VIa], quinolones [aac(6')-Ib-cr], sulfonamides [sul2], and tetracyclines [tet(41)]. In addition, the analysis of the virulome demonstrated the presence of important genes involved in the pathogenicity of this species (lipBCD, pigP, flhC, flhD, phlA, shlA, and shlB). Our data demonstrate that food-animal production can act as reservoirs for MDR and virulent strains of S. marcescens.

11.
J Antimicrob Chemother ; 78(6): 1359-1366, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37038995

RESUMEN

OBJECTIVES: To characterize a novel acquired MBL, BIM-1, in a Pseudomonas #2 (subgroup P. guariconensis) strain isolated from the Aurá river located in the Brazilian Amazon hydrographic basin. METHODS: WGS using an Illumina® MiSeq System was used to characterize the genome of Pseudomonas sp. IEC33019 strain. Southern blotting/hybridization assays were performed to confirm the location of the MBL-encoding gene, blaBIM-1 (Belém Imipenemase). Antimicrobial susceptibility testing, cloning, and biochemical and phenotypic characterization were performed to determine BIM-1 kinetics. RESULTS: The IEC33019 strain showed high resistance rates to ß-lactams, ciprofloxacin and aminoglycosides, being susceptible only to polymyxins and susceptible, increased exposure to aztreonam. WGS analysis revealed a novel acquired MBL-encoding gene, blaBIM-1, found as a gene cassette inserted into a class 1 integron (In1326) that also carried qnrVC1 and aadA11e. In1326 was located in a complex transposon, Tn7122, carried by a 52.7 kb conjugative plasmid (pIEC33019) with a toxin/antitoxin system (vapB/vapC). BIM-1 belongs to the molecular subgroup B1 and shares 70.2% and 64.9% similarity with SIM-1 and IMP-1, respectively. Kinetics analysis of BIM-1 showed hydrolytic activity against all ß-lactams tested. CONCLUSIONS: BIM-1 is a novel acquired MBL encoded by a gene carried by mobile genetic elements, which can be transferred to other Gram-negative bacilli (GNB). Because the IEC33019 strain was recovered from a river impacted by a populous metropolitan region with poor basic sanitation and served by limited potable freshwater, it would be important to establish the role of the BIM-1-producing GNB as nosocomial pathogens and/or as colonizers of the riverside population in this geographical region.


Asunto(s)
Pseudomonas , beta-Lactamasas , Pseudomonas/genética , beta-Lactamasas/genética , Brasil/epidemiología , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , beta-Lactamas , Pruebas de Sensibilidad Microbiana
12.
Braz J Microbiol ; 54(2): 841-848, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36940013

RESUMEN

OBJECTIVE: The identification of Candida spp. in denture stomatitis, the clinical manifestations, and the antifungal susceptibility profile lead to a correct and individualized therapeutic management of the patients. This study is aimed at investigating the clinical manifestations and epidemiological and microbiological characteristics of Candida-associated denture stomatitis. DESIGN: The samples were obtained by swabbing the oral mucosa of the subjects and then seeded onto Sabouraud Dextrose Agar and onto CHROMagar® Candida plates. The identification at the species level was confirmed by Matrix Assisted Laser Desorption Time of Flight Mass Spectrometry. Clinical classification was performed according to the criteria proposed by Newton (1962): (i) pinpoint hyperemia, (ii) diffuse hyperemia, and (iii) granular hyperemia. For carrying out the antifungal susceptibility testing, we adopted the CLSI M27-S4 protocol. RESULTS: C. albicans was the most prevalent species in our study. Regarding non-albicans Candida species, C. glabrata was the most common species isolated from the oral mucosa (n = 4, 14.8%), while in the prosthesis, it was C. tropicalis (n = 4, 14.8%). The most prevalent clinical manifestation was pinpoint hyperemia and diffuse hyperemia. Candida albicans, C. glabrata, and C. parapsilosis were susceptible to all the tested antifungals. Concerning fluconazole and micafungin, only two strains showed dose-dependent sensitivity (minimum inhibitory concentration (MIC), 1 µg/mL) and intermediate sensitivity (MIC, 0.25 µg/mL). One C. tropicalis strain was resistant to voriconazole (MIC, 8 µg/mL). CONCLUSIONS: C. albicans was the most common species found in oral mucosa and prosthesis. The tested antifungal drugs showed great activity against most isolates. The most prevalent clinical manifestations were Newton's type I and type II.


Asunto(s)
Hiperemia , Estomatitis Subprotética , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida , Estomatitis Subprotética/epidemiología , Estomatitis Subprotética/microbiología , Hiperemia/tratamiento farmacológico , Fluconazol/farmacología , Candida albicans , Candida glabrata , Candida parapsilosis , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica
13.
Antibiotics (Basel) ; 11(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36551493

RESUMEN

This study aimed to characterize a Klebsiella pneumoniae strain (KP411) recovered from the stool samples of poultry (Gallus gallus) in the Brazilian Amazon Region. The whole-genome sequencing of KP411 revealed the presence of an important arsenal of antimicrobial resistance genes to ß-lactams (blaCTX-M-14, blaTEM-1B, blaKPC-2, blaSVH-11), aminoglycosides [aph(3″)- Ib, aph(6)-Id, aph(3')-Ia], sulfonamides (sul1, sul2), quinolones (oqxAB), fosfomycin (fosAKP), and macrolides [mph(A)]. Furthermore, our analyses revealed that the KP411 strain belongs to the ST258 clonal lineage, which is one of the main epidemic clones responsible for the dissemination of KPC-2 worldwide. Our data suggest that food-producing animals may act as reservoirs of multidrug-resistant K. pneumoniae belonging to the ST258 clone, and, consequently, contribute to their dissemination to humans and the environment.

14.
Antimicrob Agents Chemother ; 66(12): e0083922, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36377877

RESUMEN

Since its first report, the class A Brazilian Klebsiella carbapenemase (BKC) has been detected only among Enterobacterales isolates from Brazilian hospitals. In this study, we characterized a multidrug-resistant Pseudomonas juntendi clinical isolate and identified a 43.3-kb plasmid carrying blaBKC-1 and a class 1 integron (In1996) containing the arr-2, qnrVC1, dfrA21, and aac(6')-Ib' gene cassettes. Our results confirm the ability of Pseudomonas putida group isolates to acquire antimicrobial resistance determinants and further act as resistance reservoirs.


Asunto(s)
Carbapenémicos , Pseudomonas putida , Carbapenémicos/farmacología , Klebsiella , Pseudomonas putida/genética , Brasil , Antibacterianos/farmacología , Pseudomonas , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana
15.
J Glob Antimicrob Resist ; 31: 165-166, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36064106

RESUMEN

OBJECTIVE: Herein, this study aimed to perform the genomic characterization of a blaKPC-2 positive Klebsiella pneumoniae (KP1.1JP) strain isolated from the surface water of river located the Brazilian Amazon region. METHODS: Antimicrobial susceptibility testing was performed following BrCAST/EUCAST recommendations. Genomic DNA was extracted and sequenced using the Illumina® NextSeq platform and the assembly of the generated reads was performed using the SPAdes software. Research on the sequence type, resistance and virulence encoding genes, and plasmid replicon typing was carried out. RESULTS: The KP1.1JP strain was resistant to all ß-lactams, aminoglycosides, and fluoroquinolones tested. The genome size was 5 626 346 bp, distributed in 203 contigs and a guanine and cytosine content of 57.02%. The values of N50 and N75 were 285 583 bp and 173 927 bp, respectively. We verified that KP1.1JP belongs to ST101 and carries genes encoding resistance to ß-lactams (blaCTX-M-15, blaTEM-1B, blaOXA-1, blaSVH-182, and blaKPC-2), aminoglycosides [aac(3')-IIa, aph(3')-Vla], fluoroquinolones [aac(6')-Ib-cr], phenicol (catA1, catA2, catB3), tetracycline [tet(D)], trimethoprim (dfrA14), and fosfomycin (fosA). Additionally, the following virulence encoding genes were also detected: mrkABCDFHIJ (Fimbria type 3); fimABCDRFGHIK (Fimbria type 1); entABCDEFS and fepABCDG (siderophores); iroN, irp1, and irp2 (salmochelins); fyuA and ybtAEPQSTUX (yersiniabactin); and iutA (aerobactin). CONCLUSIONS: We report the occurrence of a K. pneumoniae ST101 strain carrying blaKPC-2 gene in an Amazon river in Brazil. The genomic characteristics of this strain will contribute to a better understanding of the spread of pathogens of clinical importance in the environment based on a One Health perspective.


Asunto(s)
Klebsiella pneumoniae , beta-Lactamasas , Aminoglicósidos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamasas/genética , beta-Lactamas , Brasil , Fluoroquinolonas , Pruebas de Sensibilidad Microbiana , Ríos , Secuenciación Completa del Genoma
16.
Microbiol Spectr ; 10(5): e0056522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35993730

RESUMEN

The epidemiology of antimicrobial resistance (AMR) is complex, with multiple interfaces (human-animal-environment). In this context, One Health surveillance is essential for understanding the distribution of microorganisms and antimicrobial resistance genes (ARGs). This report describes a multicentric study undertaken to evaluate the bacterial communities and resistomes of food-producing animals (cattle, poultry, and swine) and healthy humans sampled simultaneously from five Brazilian regions. Metagenomic analysis showed that a total of 21,029 unique species were identified in 107 rectal swabs collected from distinct hosts, the highest numbers of which belonged to the domain Bacteria, mainly Ruminiclostridium spp. and Bacteroides spp., and the order Enterobacterales. We detected 405 ARGs for 12 distinct antimicrobial classes. Genes encoding antibiotic-modifying enzymes were the most frequent, followed by genes related to target alteration and efflux systems. Interestingly, carbapenemase-encoding genes such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1 were identified in distinct hosts. Our results revealed that, in general, the bacterial communities from humans were present in isolated clusters, except for the Northeastern region, where an overlap of the bacterial species from humans and food-producing animals was observed. Additionally, a large resistome was observed among all analyzed hosts, with emphasis on the presence of carbapenemase-encoding genes not previously reported in Latin America. IMPORTANCE Humans and food production animals have been reported to be important reservoirs of antimicrobial resistance (AMR) genes (ARGs). The frequency of these multidrug-resistant (MDR) bacteria tends to be higher in low- and middle-income countries (LMICs), due mainly to a lack of public health policies. Although studies on AMR in humans or animals have been carried out in Brazil, this is the first multicenter study that simultaneously collected rectal swabs from humans and food-producing animals for metagenomics. Our results indicate high microbial diversity among all analyzed hosts, and several ARGs for different antimicrobial classes were also found. As far as we know, we have detected for the first time ARGs encoding carbapenemases, such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1, in Latin America. Thus, our results support the importance of metagenomics as a tool to track the colonization of food-producing animals and humans by antimicrobial-resistant bacteria. In addition, a network surveillance system called GUARANI, created for this study, is ready to be expanded and to collect additional data.


Asunto(s)
Antiinfecciosos , Farmacorresistencia Bacteriana , Humanos , Porcinos , Bovinos , Animales , Farmacorresistencia Bacteriana/genética , Brasil , Metagenómica/métodos , Bacterias , Antibacterianos/farmacología , Aves de Corral , Genes Bacterianos
17.
Microb Drug Resist ; 28(8): 849-852, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35833887

RESUMEN

Pseudomonas aeruginosa is an opportunist pathogen usually associated with life threatening infections and exhibits a set of intrinsic and acquired antimicrobial mechanisms. Although resistance to penicillins-like compounds is commonly associated with the chromosomal Pseudomonas-derived cephalosporinases ß-lactamase, the real contribution of OXA-50, a second chromosomally encoded ß-lactamase, remains unclear. In this study, we characterized the biochemical properties of OXA-50, OXA-488, and OXA-494. Both oxacilinases differ from OXA-50 in two amino acids each. The blaOXA-50, blaOXA-488, and blaOXA-494 were cloned into pET26b+ that was transformed into Escherichia coli DH5α strain, expressed in E. coli BL21 strain, and then purified for obtaining the hydrolytic parameters. Benzylpenicillin was the preferential substrate instead of oxacillin. Besides, OXA-488 showed a threefold increase in catalytic efficiency for benzylpenicillin, and it was twofold more efficient in hydrolyzing imipenem, compared with OXA-50, although such carbapenemase activity was considered weak. In addition, OXA-488 and OXA-494 showed an increased affinity for penicillins, which contributed to the increased catalytic efficiency against ampicillin, especially OXA-488. Chromosomally encoded resistance mechanisms are usually overshadowed by acquired mechanisms. However, understanding their real contribution is essential to comprehend the versatile profiles verified in P. aeruginosa isolates. Such information can help to choose the best therapy in a scenario of limited options.


Asunto(s)
Pseudomonas aeruginosa , beta-Lactamas , Antibacterianos/farmacología , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Cinética , Pruebas de Sensibilidad Microbiana , Oxacilina , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , beta-Lactamasas/metabolismo , beta-Lactamas/metabolismo , beta-Lactamas/farmacología
18.
Sci Data ; 9(1): 366, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752638

RESUMEN

The One Health concept is a global strategy to study the relationship between human and animal health and the transfer of pathogenic and non-pathogenic species between these systems. However, to the best of our knowledge, no data based on One Health genome-centric metagenomics are available in public repositories. Here, we present a dataset based on a pilot-study of 2,915 metagenome-assembled genomes (MAGs) of 107 samples from the human (N = 34), cattle (N = 28), swine (N = 15) and poultry (N = 30) gut microbiomes. Samples were collected from the five Brazilian geographical regions. Of the draft genomes, 1,273 were high-quality drafts (≥90% of completeness and ≤5% of contamination), and 1,642 were medium-quality drafts (≥50% of completeness and ≤10% of contamination). Taxonomic predictions were based on the alignment and concatenation of single-marker genes, and the most representative phyla were Bacteroidota, Firmicutes, and Proteobacteria. Many of these species represent potential pathogens that have already been described or potential new families, genera, and species with potential biotechnological applications. Analyses of this dataset will highlight discoveries about the ecology and functional role of pathogens and uncultivated Archaea and Bacteria from food-producing animals and humans. Furthermore, it also represents an opportunity to describe new species from underrepresented taxonomic groups.


Asunto(s)
Microbioma Gastrointestinal , Metagenoma , Animales , Archaea/genética , Bacterias/genética , Bovinos , Humanos , Metagenómica , Porcinos
19.
J Glob Antimicrob Resist ; 30: 143-147, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35447384

RESUMEN

OBJECTIVES: We characterised the complex surrounding regions of blaGES-16 in a Pseudomonas aeruginosa exoU+ strain (P-10.226) in Brazil. METHODS: Species identification was performed by MALDI-TOF MS, and the antimicrobial susceptibility profile was determined by broth microdilution based on European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints. The whole genome sequencing (WGS) of P-10.226 strain was performed using both short-read paired-end sequencing on the Illumina MiSeq platform as well as the long-read Oxford Nanopore MinION. RESULTS: WGS analysis showed that P-10.226 carried blaGES-16, which was found as a gene cassette inserted into a novel class I integron, In1992 (aadB-blaOXA-56-blaGES-16-aadB-aadA6c), whose 3'-CS was truncated by a nested transposable element, IS5564::ISPa157. The structure was even more complex since IS6100-ΔIS6100 structure and a TnAs2-like harbouring the operon merRTPADE was found downstream In1992. Fragments of TnAs3 harbouring 25-bp imperfect inverted repeats were identified bordering the intl1 of In1992 and also flanking IS6100-ΔIS6100, which might be genetic marks of its previous presence in the genome. Interestingly, In1992 also shows a distinct cassette array from In581 (blaGES-16-dfrA22-aacA27-aadA1), which was previously reported in Serratia marcescens strains recovered in Brazil. Finally, exoU gene, which encodes a potent cytotoxin of type III secretion systems (T3SS) effector proteins from P. aeruginosa and is associated to severe infections, was also detected. CONCLUSION: We described the novel In1992 carrying blaGES-16 surrounded by complex transposition events in a XDR P. aeruginosa strain. The identification of many sets of direct repeats adjacent to TnAs3 fragments indicates a major past of transposition events that shaped the current genetic environment of In1992.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Elementos Transponibles de ADN , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , beta-Lactamasas/genética
20.
Braz J Microbiol ; 53(3): 1221-1229, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35378689

RESUMEN

Trichosporon spp. are a constituent of the normal flora of humans that can cause both superficial and invasive infections, mainly in immunocompromised and immunocompetent hosts, respectively. Herein, we a report of Trichosporon asahii causing subcutaneous fungal infection (SFI) in an immunocompetent patient after carpal tunnel surgery. Although susceptible to fluconazole, the treatment of SFI failed even using high doses of this azole. The skin lesion improved following the administration of voriconazole. We conducted a literature minireview searching reports on SFI in immunocompetent patients to check for epidemiological, diagnostic, therapeutic, and outcome characteristics. A total of 32 cases were reported. Despite being uncommon, the clinical suspicion and early diagnosis of SFI in immunocompetent patients undergoing previous surgery are important. Our study indicated that the azoles are the most active antifungal agents against Trichosporon spp., except for fluconazole, and voriconazole can be considered the first therapeutic option.


Asunto(s)
Dermatomicosis , Trichosporon , Tricosporonosis , Antifúngicos/uso terapéutico , Azoles/uso terapéutico , Basidiomycota , Dermatomicosis/tratamiento farmacológico , Fluconazol/uso terapéutico , Humanos , Tricosporonosis/diagnóstico , Tricosporonosis/tratamiento farmacológico , Tricosporonosis/microbiología , Voriconazol/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA