Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(26): 68477-68488, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37126169

RESUMEN

This work presents the synthesis of SiO2/Nb2O5 and SiO2/ZnS heterostructures using the microwave-assisted hydrothermal (MAH) method, which is fast and has low temperature. The silica used in the synthesis was obtained by burning the rice husk without any pre- or post-treatments. The obtained samples were characterized using various techniques such as X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and UV-visible. The obtained silica was found to be amorphous, and the materials used for modification showed characteristic of the type of synthesis used. SEM images showed that Nb2O5 and ZnS interacted with the SiO2 surface, filling the voids. In the photocatalytic process, the heterostructures showed enhanced decolorization efficiency for dyes such as rhodamine B (RhB) and methylene blue (MB) compared to SiO2. For RhB, the silica decolorized approximately 24%, and for MB, it discolored approximately 27%; SiO2/Nb2O5 showed 91.24% decolorization efficiency for RhB and 72.77% MB, while SiO2/ZnS showed approximately 96% for RhB and 100% for MB. All samples were tested under the same conditions. This demonstrates that the use of rice husk residue not only improves the photocatalytic activity of heterostructures but also promotes the utilization of improperly discarded residues.


Asunto(s)
Oryza , Dióxido de Silicio , Dióxido de Silicio/química , Niobio/química , Compuestos de Zinc
2.
Dalton Trans ; 52(18): 5976-5982, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37039394

RESUMEN

In this work, we present the potassium niobate (KNbO3) nanoparticles as a suitable mesoporous photoelectrode for dye-sensitized solar cells (DSSCs). The KNbO3 particles were synthesized by the microwave-assisted hydrothermal method using mild conditions and characterized by SEM, XRD, Raman, and UV-Vis diffuse reflectance. The particles presented a pyramidal tower-like shape with an orthorhombic structure and an indirect bandgap of (3.0 ± 0.1) eV. Dye-sensitized solar cells were assembled using the synthesized KNbO3 nanoparticles, which were deposited as a photoelectrode on a TiO2 recombination charge blocking layer. It is noticeable that the synergistic operation of the TiO2 blocking layer and KNbO3 photoelectrode is essential to achieve photovoltaic behaviour in our solar cells. The short-circuit current density of Jsc = 2.82 mA, open-circuit voltage Voc = 669 mV, fill factor FF = 0.62, and a power conversion efficiency PCE = 1.17%, reports elevated parameters if compared to other DSSCs alternative materials, becoming potassium niobate suitable as photoelectrode.

3.
Phys Chem Chem Phys ; 24(25): 15556-15564, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35718876

RESUMEN

The growth of ZnS photoelectrodes on ZnO particles identified as ZnO/ZnS(ZC + TAA) by the microwave-assisted hydrothermal method showed excellent photovoltaic parameters of JSC = 1.2 mA cm-2 and FF = 0.66, even compared to ZnS(ZC + TAA) used as a reference sample with JSC = 0.15 mA cm-2 and FF = 0.52. A careful analysis indicates that the better charge transfer and the higher resistance to recombination present in the ZnO/ZnS(ZC + TAA) samples were the origin of the best photovoltaic behavior. These assertions are supported by a set of samples synthesized from different precursors resulting in different crystal structures, which can be directly associated with current densities and fill factors. All aspects about synthesis and optical/electronic parameters associated with structural features will be available in this article.

4.
Braz Oral Res ; 36: e037, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35293502

RESUMEN

This paper evaluates the physicochemical and biological properties of experimental resin-based dual-cured calcium aluminate (CA) and calcium titanate (CTi) materials for vital pulp therapy (VPT). The experimental dual-cured materials were obtained as two pastes: a) Bis-EMA 10, PEG 400, DHEPT, EDAB, camphorquinone, and butylated hydroxytoluene; and b) fluoride ytterbium, Bis-EMA 10, Bis-EMA 30, benzoyl peroxide, and butylated hydroxytoluene. The materials were divided into six groups based on the added calcium component: MTA (MTA®, Angelus); CLQ (Clinker-Fillapex®, Angelus); CA (calcined at ,1200°C in pastes a and b); CA800 (calcined at 800°C in paste a); CA1200 (calcined at 1,200°C in paste a); and CTi (paste a). The real-time degree of conversion and rate of polymerization (n = 3), diametral tensile strength (n = 10), hydrogen potential (n = 15), calcium ion release (n = 10), water sorption and solubility (n = 10), and cell viability (n = 6) were evaluated. One- and two-way ANOVA and Tukey's post hoc test were used in the analysis of the parametric data, and Kruskal-Wallis and Dunn's multiple tests were used to analyze the nonparametric data (α = 0.05). CLQ, CA800 and CA1200 had the highest diametral tensile strength. The water solubility of MTA was similar to that of CA800, CA1200 and CTi. CA800 and CA1200 resulted in cell viabilities similar to those of MTA and CLQ. The experimental dual-cured CA-based material that calcined at 800°C showed physicochemical and biological properties suitable for VPT, and similar to those of MTA.


Asunto(s)
Calcio , Silicatos , Compuestos de Aluminio , Calcio/análisis , Compuestos de Calcio , Óxidos/química , Óxidos/farmacología , Silicatos/química , Titanio
5.
Braz. oral res. (Online) ; 36: e037, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS, BBO - Odontología | ID: biblio-1364588

RESUMEN

Abstract: This paper evaluates the physicochemical and biological properties of experimental resin-based dual-cured calcium aluminate (CA) and calcium titanate (CTi) materials for vital pulp therapy (VPT). The experimental dual-cured materials were obtained as two pastes: a) Bis-EMA 10, PEG 400, DHEPT, EDAB, camphorquinone, and butylated hydroxytoluene; and b) fluoride ytterbium, Bis-EMA 10, Bis-EMA 30, benzoyl peroxide, and butylated hydroxytoluene. The materials were divided into six groups based on the added calcium component: MTA (MTA®, Angelus); CLQ (Clinker-Fillapex®, Angelus); CA (calcined at ,1200°C in pastes a and b); CA800 (calcined at 800°C in paste a); CA1200 (calcined at 1,200°C in paste a); and CTi (paste a). The real-time degree of conversion and rate of polymerization (n = 3), diametral tensile strength (n = 10), hydrogen potential (n = 15), calcium ion release (n = 10), water sorption and solubility (n = 10), and cell viability (n = 6) were evaluated. One- and two-way ANOVA and Tukey's post hoc test were used in the analysis of the parametric data, and Kruskal-Wallis and Dunn's multiple tests were used to analyze the nonparametric data (α = 0.05). CLQ, CA800 and CA1200 had the highest diametral tensile strength. The water solubility of MTA was similar to that of CA800, CA1200 and CTi. CA800 and CA1200 resulted in cell viabilities similar to those of MTA and CLQ. The experimental dual-cured CA-based material that calcined at 800°C showed physicochemical and biological properties suitable for VPT, and similar to those of MTA.

6.
Heliyon ; 7(3): e06521, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33786401

RESUMEN

Zinc titanates are compounds that have shown great application versatility, including in the field of semiconductors. Solid state reactions, the polymeric precursor method and the hydrothermal method are the most mentioned synthesis of these compounds in the literature. In the present work, we use microwave assisted hydrothermal method (MAH) to synthesize zinc titanate and evaluate its potential for solar cell applications through structural and optical characterization techniques. The synthesized samples were also subjected to a variable temperature heat treatment in the range of 500 °C-800 °C. The analysis showed that the crystallization of the material starts at 500 °C and that samples submitted to temperatures of 600 °C-800 °C showed the formation of two phases of zinc titanates, being a cubic phase of ZnTiO3, considered rare in the literature, predominant up to a temperature of 800 °C. The optical characterization, based on the techniques of photoluminescence spectroscopy and UV-Visible spectroscopy, showed that the photoluminescent activity and the energy of the band gap increased with the increase of the temperature of the heat treatment, having the highest response in 700 °C, facts that can be linked to the predominant formation of the cubic phase of ZnTiO3 and simultaneous of the cubic and rhombohedral phases of ZnTiO3 at 700 and 800 °C. Finally, we highlight as the most important results, the fact that it was possible to obtain these titanates at a temperature lower than that reported in the literature, and that the heat-treated sample at 500 °C is the one with the lowest energy expenditure to be synthesized and the one with the greatest potential for application in dye-sensitized solar cells (DSSC's).

7.
J Biomed Mater Res A ; 109(7): 1160-1172, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32985092

RESUMEN

Novel poly(vinyl alcohol)/chondroitin sulfate (PVA/CS) composite hydrogels containing hydroxyapatite (HA) or Sr-doped HA (HASr) particles were synthesized by a freeze/thaw method and characterized aiming towards biomedical applications. HA and HASr were synthesized by a wet-precipitation method and added to the composite hydrogels in fractions up to 15 wt%. Physical-chemical characterizations of particles and hydrogels included scanning electron microscopy, energy-dispersive spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetry, porosity, compressive strength/elastic modulus, swelling degree, and cell viability. Particles were irregular in shape and appeared to have narrow size variation. The thermal behavior of composite hydrogels was altered compared to the control (bare) hydrogel. All hydrogels exhibited high porosity. HA/HASr particles reduced total porosity without reducing pore size. The mechanical strength was improved as the fraction of HA or HASr was increased. HASr particles led to a faster water uptake but did not interfere with the total hydrogel swelling capacity. In cell viability essay, increased cell growth (above 120%) was observed in all groups including the control hydrogel, suggesting a bioactive effect. In conclusion, PVA/CS hydrogels containing HA or HASr particles were successfully synthesized and showed promising morphological, mechanical, and swelling properties, which are particularly required for scaffolding.


Asunto(s)
Materiales Biocompatibles/química , Sulfatos de Condroitina/química , Durapatita/química , Alcohol Polivinílico/química , Estroncio/química , Materiales Biocompatibles/síntesis química , Sulfatos de Condroitina/síntesis química , Fuerza Compresiva , Durapatita/síntesis química , Módulo de Elasticidad , Alcohol Polivinílico/síntesis química , Porosidad , Termogravimetría
8.
Dent Mater ; 36(10): 1314-1321, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32758374

RESUMEN

OBJECTIVE: Zirconia and alumina nanoparticles were coated with a silica-rich layer (ALSI and ZRSI) and used to prepare experimental nanohybrid resin composites, which were characterized and compared to a control commercial resin composite (Filtek Z350 XT). METHODS: Silica nanoparticles with sizes compatible to ALSI (Aerosil 150) and ZRSI (Aerosil OX 50) were tested as references. The volume of nanoparticles was equivalent across the composites, which also had consistent content of glass microparticles. CC conversion, viscosity, depth of cure, surface topography, hardness, opacity, radio-opacity, and edge chipping resistance (ReA) were tested after 24 h. Flexural strength (σf) and fracture toughness (KIC) were also tested after 15 K thermal cycles. Data were analyzed using one-way or two-way ANOVA and Tukey's test (α = 0.05). RESULTS: ALSI and ZRSI yielded resin composites with lower viscosity and more irregular nanoagglomerates compared to nanosilica-based composites. CC conversion and depth of cure were lower for ZRSI composite, which had higher opacity, radio-opacity, and hardness. ReA was higher for ALSI composite. Composites with ALSI and ZRSI showed stable σf after aging, whereas the control and Aerosil 150 resin composites showed significant degradation. The commercial and nanosilica-based composites showed up to 42% reduction in KIC after aging, whereas resin composites with ZRSI and ALSI showed a more stable KIC. SIGNIFICANCE: ALSI and ZRSI generated nanohybrid resin composites with improved and/or more stable physical properties compared with nanosilica-based and commercial composites. This study suggests that changing the composition of nanofillers is a simple method to enhance the performance of nanohybrid composites.


Asunto(s)
Metacrilatos , Nanopartículas , Resinas Compuestas , Dureza , Ensayo de Materiales , Dióxido de Silicio , Propiedades de Superficie
9.
Dent Mater ; 35(5): 763-771, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30827797

RESUMEN

OBJECTIVE: To investigate the wear behavior of novel graded glass/zirconia materials and their abrasiveness to the antagonist relative to homogeneous zirconias (polished or glazed) and a glass-ceramic. METHODS: Graded glass/zirconia specimens were prepared by sintering with concurrent glass-infiltration of pre-sintered zirconia (3Y-TZP) with a polished or as-machined surface. Monolithic zirconia samples were sintered and their surfaces were polished or glazed (as-machined). Glass-ceramic samples were obtained and the surface polished. All specimens were subjected to chewing simulations with a steatite antagonist (r = 3 mm) and a cyclic load of 50 N. Quantitative measurements of wear and roughness were performed on ceramics and antagonists for prescribed number of cycles. Damage sustained in ceramics and antagonists was analyzed by SEM. RESULTS: The polished zirconia presented little to no variation in wear depth (2 µm) and roughness (0.06 µm). Graded and glazed zirconia experienced a rapid increase in wear depth while the superficial glass layer was present (until 1000 cycles), but showed little variations afterwards - at 450k cycles ∼15 µm for graded and 78 µm for glazed zirconia. The glass-ceramic presented the greatest wear depth (463 µm) and roughness (1.48 µm). Polished zirconia, polished graded zirconia and glazed zirconia yielded significantly lower volumetric wear (∼3 mm3) of the antagonist than as-machined graded zirconia and glass-ceramic (∼5 mm3). SIGNIFICANCE: Polished graded zirconia and polished zirconia presented little wear and roughness, as well as yielded reduced antagonist wear. Glassy materials are both more susceptible to wear and more abrasive to the antagonist relative to zirconia.


Asunto(s)
Pulido Dental , Porcelana Dental , Cerámica , Materiales Dentales , Ensayo de Materiales , Propiedades de Superficie , Circonio
10.
Dent Mater ; 34(8): e214-e223, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29789161

RESUMEN

OBJECTIVE: To synthetize calcium aluminate (C3A) and silver-containing C3A particles (C3A+Ag) testing their effects on the properties of a MTA-based endodontic sealer in comparison to an epoxy resin- and a calcium silicate-based sealer. METHODS: Pure C3A and C3A+Ag particles were synthesized by a chemical method and characterized using XRD to identify crystalline phases. SEM/EDS analysis investigated morphology, particle size, and elemental composition of particles. Setting time, flow, radiopacity, water sorption and solubility of commercial and modified sealers were evaluated according to ISO 6876/2012. The pH and ions release were measured using a pHmeter and a microwave induced plasma optical emission spectrometer. The inhibition of biofilm growth was evaluated by confocal laser scanning microscopy (CLSM). Data were rank transformed and analyzed by ANOVA and Tukey test (P<0.05). RESULTS: The C3A particles showed an irregular grain agglomerated structure with voids and pores. In C3A+Ag particles, Ag modified the material morphology, confirming the deposition of Ag. The physicochemical properties of the modified MTA-based sealer were similar to the commercial material, except for the significant increase in Ca+2 release. However, there was no Ag release. Setting time, flow, radiopacity, water sorption and solubility were adequate for all materials. All the materials showed alkaline pH. Antibiofilm effect was improved in the presence of C3A particles, while the biofilm inhibition was lower in the presence of Ag. SIGNIFICANCE: The modified sealer presented improved antibiofilm properties and calcium release, without dramatic effects on the other characteristics. It is expected a positive effect in its antimicrobial behavior.


Asunto(s)
Compuestos de Aluminio/química , Compuestos de Aluminio/síntesis química , Compuestos de Calcio/química , Compuestos de Calcio/síntesis química , Óxidos/química , Materiales de Obturación del Conducto Radicular/síntesis química , Silicatos/química , Plata/química , Biopelículas/efectos de los fármacos , Combinación de Medicamentos , Resinas Epoxi/química , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Solubilidad , Espectrometría por Rayos X , Difracción de Rayos X
11.
Ceram Int ; 43(14): 10999-11005, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29097830

RESUMEN

The fabrication of zirconia dental restorations is a time-consuming process due to traditional slow sintering schemes; zirconia (Y-TZP) produced by these conventional routes are predominantly opaque. Novel speed sintering protocols have been developed to meet the demand for time and cost effective chairside CAD/CAM-produced restorations, as well as to control ceramic microstructures for better translucency. Although the speed sintering protocols have already been used to densify dental Y-TZP, the wear properties of these restorations remain elusive. Fast heating and cooling rates, as well as shorter sintering dwell times are known to affect the microstructure and properties of zirconia. Thus, we hypothesize that speed sintered zirconia dental restorations possess distinct wear and physical characteristics relative to their conventionally sintered counterparts. Glazed monolithic molar crowns of translucent Y-TZP (inCoris TZI, Sirona) were fabricated using three distinct sintering profiles: Super-speed (SS, 1580 °C, dwell time 10 min), Speed (S, 1510 °C, dwell time 25 min), and Long-term (LT, 1510 °C, dwell time 120 min). Microstructural, optical and wear properties were investigated. Crowns that were super-speed sintered possessed higher translucency. Areas of mild and severe wear were observed on the zirconia surface in all groups. Micropits in the wear crater were less frequent for the LT group. Groups S and SS exhibited more surface pits, which caused a scratched steatite surface that is associated with a greater volume loss. Tetragonal to monoclinic phase transformation, resulting from the sliding wear process, was present in all three groups. Although all test groups had withstood thermo-mechanical challenges, the presence of hairline cracks emanating from the occlusal wear facets and extending deep into the restoration indicates their susceptibility to fatigue sliding contact fracture.

12.
J Prosthet Dent ; 118(6): 771-777, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28385439

RESUMEN

STATEMENT OF PROBLEM: The color of dental poly(methyl methacrylate) (PMMA) is conventionally rendered by organic and inorganic pigments, which are usually not bonded to the polymer network. Functionalized ceramic pigments can be used to color PMMA, allowing improved chemical interaction with the resin matrix. PURPOSE: The purpose of this in vitro study was to synthesize, functionalize, and characterize pink manganese-doped alumina ceramic pigments. The hypothesis tested was that functionalized ceramic pigments would render pink coloration to a translucent PMMA without jeopardizing its mechanical properties. MATERIAL AND METHODS: Pink alumina powders doped with 1 or 2 mol% of manganese (Al2O3:Mn) were prepared by means of a polymeric precursor method. Pigment (Pig.) particles were functionalized with a silica coating method followed by silanation before preparation of PMMA-based composite resins (5 wt% pigment). The color of composite resins (Pig.1% and Pig.2%) and PMMA controls (Pink and translucent [Trans]) was evaluated (CIELab color coordinates), and their mechanical properties were tested (3-point bending). RESULTS: The microstructure of the pigment particles showed approximately 55-nm nanocrystals of manganese-doped α-alumina clustered into irregular porous particles up to 60 µm. The composite resins and pink PMMA showed similar color parameters (CIE a* pink=20.1, Pig.1%=14.6, Pig.2%=16.0, Trans=0.19, P<.001; CIE b* Pink=17.0, Pig.1%=18.6, Pig.2%=19.0, Trans=2.52, P<.001). No statistical differences were observed in mechanical properties among groups (σf pink=98.4, Pig.1%=98.1, Pig.2%=98.8, trans=89.1, P=.136). CONCLUSIONS: The addition of the functionalized pink ceramic pigments to a translucent PMMA yielded similar coloration to that of the regular pink PMMA used in dentistry and did not jeopardize its mechanical properties.


Asunto(s)
Óxido de Aluminio , Cerámica , Materiales Dentales , Diseño de Prótesis Dental/métodos , Manganeso , Polimetil Metacrilato , Coloración de Prótesis , Ensayo de Materiales
13.
Dent Mater ; 32(3): 450-60, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26754431

RESUMEN

OBJECTIVES: This study evaluated the effect of addition of alumina particles (polycrystalline or monocrystalline), with or without silica coating, on the optical and mechanical properties of a porcelain. METHODS: Groups tested were: control (C), polycrystalline alumina (PA), polycrystalline alumina-silica (PAS), monocrystalline alumina (MA), monocrystalline alumina-silica (MAS). Polycrystalline alumina powder was synthesized using a polymeric precursor method; a commercially available monocrystalline alumina powder (sapphire) was acquired. Silica coating was obtained by immersing alumina powders in a tetraethylorthosilicate solution, followed by heat-treatment. Electrostatic stable suspension method was used to ensure homogenous dispersion of the alumina particles within the porcelain powder. The ceramic specimens were obtained by heat-pressing. Microstructure, translucency parameter, contrast ratio, opalescence index, porosity, biaxial flexural strength, roughness, and elastic constants were characterized. RESULTS: A better interaction between glass matrix and silica coated crystalline particles is suggested in some analyses, yet further investigation is needed to confirm it. The materials did not present significant differences in biaxial flexural strength, due to the presence of higher porosity in the groups with alumina addition. Elastic modulus was higher for MA and MAS groups. Also, these were the groups with optical qualities and roughness closer to control. The PA and PAS groups were considerably more opaque as well as rougher. SIGNIFICANCE: Porcelains with addition of monocrystalline particles presented superior esthetic qualities compared to those with polycrystalline particles. In order to eliminate the porosity in the ceramic materials investigated herein, processing parameters need to be optimized as well as different glass frites should be tested.


Asunto(s)
Óxido de Aluminio/química , Porcelana Dental/química , Cerámica , Materiales Biocompatibles Revestidos/química , Cristalización , Análisis del Estrés Dental , Calor , Ensayo de Materiales , Tamaño de la Partícula , Docilidad , Porosidad , Propiedades de Superficie
14.
Phys Chem Chem Phys ; 17(17): 11341-9, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25848644

RESUMEN

A microwave-assisted hydrothermal method was applied to synthesize BaZr1-xHfxO3, (BZHO) solid solutions at a low temperature, 140 °C, and relatively short times, 160 min. The detailed features of the crystal structure, at both short and long ranges, as well as the crystal chemistry doping process, are extensively analysed. X-ray diffraction measurements and Raman spectroscopy have been used to confirm that pure and Hf-doped BZO materials present a cubic structure. Extended X-ray absorption fine structure (EXAFS) spectra indicate that Hf(4+) ions have replaced the Zr(4+) ions on the 6-fold coordination and a subsequent change on the Ba(2+) 12-fold coordination can be sensed. X-ray absorption near-edge structure (XANES) spectroscopy measurements reveal a local symmetry breaking process, associated to overlap of the 4d-2p and 5d-2p orbitals of Zr-O and Hf-O bonds, respectively. Field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HRTEM) show the mesocrystalline nature of self-assembled BZHO nanoparticles under a dodecahedron shape. In addition first principle calculations were performed to complement the experimental data. The analysis of the band structures and density of states of the undoped BZO and doped BZHO host lattice allow deep insight into the main electronic features. The theoretical results help us to find a correlation between simulated and experimental Raman modes and allow a more substantial interpretation of crystal structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA