Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20209957

RESUMEN

Prognostic models to predict the risk of clinical deterioration in acute COVID-19 are required to inform clinical management decisions. Among 75,016 consecutive adults across England, Scotland and Wales prospectively recruited to the ISARIC Coronavirus Clinical Characterisation Consortium (ISARIC4C) study, we developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) using 11 routinely measured variables. We used internal-external cross-validation to show consistent measures of discrimination, calibration and clinical utility across eight geographical regions. We further validated the final model in held-out data from 8,252 individuals in London, with similarly consistent performance (C-statistic 0.77 (95% CI 0.75 to 0.78); calibration-in-the-large 0.01 (-0.04 to 0.06); calibration slope 0.96 (0.90 to 1.02)). Importantly, this model demonstrated higher net benefit than using other candidate scores to inform decision-making. Our 4C Deterioration model thus demonstrates unprecedented clinical utility and generalisability to predict clinical deterioration among adults hospitalised with COVID-19.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20151118

RESUMEN

BackgroundThe coronavirus (COVID-19) pandemic affects cardiovascular diseases (CVDs) directly through infection and indirectly through health service reorganisation and public health policy. Real-time data are needed to quantify direct and indirect effects. We aimed to monitor hospital activity for presentation, diagnosis and treatment of CVDs during the pandemic to inform on indirect effects. MethodsWe analysed aggregate data on presentations, diagnoses and treatments or procedures for selected CVDs (acute coronary syndromes, heart failure, stroke and transient ischaemic attack, venous thromboembolism, peripheral arterial disease and aortic aneurysm) in UK hospitals before and during the COVID-19 epidemic. We produced an online visualisation tool to enable near real-time monitoring of trends. FindingsNine hospitals across England and Scotland contributed hospital activity data from 28 Oct 2019 (pre-COVID-19) to 10 May 2020 (pre-easing of lockdown), and for the same weeks during 2018-2019. Across all hospitals, total admissions and emergency department (ED) attendances decreased after lockdown (23 March 2020) by 57.9% (57.1-58.6%) and 52.9% (52.2-53.5%) respectively compared with the previous year. Activity for cardiac, cerebrovascular and other vascular conditions started to decline 1-2 weeks before lockdown, and fell by 31-88% after lockdown, with the greatest reductions observed for coronary artery bypass grafts, carotid endarterectomy, aortic aneurysm repair and peripheral arterial disease procedures. Compared with before the first UK COVID-19 (31 January 2020), activity declined across diseases and specialties between the first case and lockdown (total ED attendances RR 0.94, 0.93-0.95; total hospital admissions RR 0.96, 0.95-0.97) and after lockdown (attendances RR 0.63, 0.62-0.64; admissions RR 0.59, 0.57-0.60). There was limited recovery towards usual levels of some activities from mid-April 2020. InterpretationSubstantial reductions in total and cardiovascular activities are likely to contribute to a major burden of indirect effects of the pandemic, suggesting they should be monitored and mitigated urgently. FundingBritish Heart Foundation, Health Data Research UK

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20127175

RESUMEN

BackgroundCardiovascular diseases(CVD) increase mortality risk from coronavirus infection(COVID-19), but there are concerns that the pandemic has affected supply and demand of acute cardiovascular care. We estimated excess mortality in specific CVDs, both "direct", through infection, and "indirect", through changes in healthcare. MethodsWe used population-based electronic health records from 3,862,012 individuals in England to estimate pre- and post-COVID-19 mortality risk("direct" effect) for people with incident and prevalent CVD. We incorporated: (i)pre-COVID-19 risk by age, sex and comorbidities, (ii)estimated population COVID-19 prevalence, and (iii)estimated relative impact of COVID-19 on mortality(relative risk, RR: 1.5, 2.0 and 3.0). For "indirect" effects, we analysed weekly mortality and emergency department data for England/Wales and monthly hospital data from England(n=2), China(n=5) and Italy(n=1) for CVD referral, diagnosis and treatment until 1 May 2020. FindingsCVD service activity decreased by 60-100% compared with pre-pandemic levels in eight hospitals across China, Italy and England during the pandemic. In China, activity remained below pre-COVID-19 levels for 2-3 months even after easing lockdown, and is still reduced in Italy and England. Mortality data suggest indirect effects on CVD will be delayed rather than contemporaneous(peak RR 1.4). For total CVD(incident and prevalent), at 10% population COVID-19 rate, we estimated direct impact of 31,205 and 62,410 excess deaths in England at RR 1.5 and 2.0 respectively, and indirect effect of 49932 to 99865 excess deaths. InterpretationSupply and demand for CVD services have dramatically reduced across countries with potential for substantial, but avoidable, excess mortality during and after the COVID-19 pandemic. FundingNIHR, HDR UK, Astra Zeneca

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20121962

RESUMEN

BackgroundWe aimed to describe trends of excess mortality in the United Kingdom (UK) stratified by nation and cause of death, and to develop an online tool for reporting the most up to date data on excess mortality. MethodsPopulation statistics agencies in the UK including the Office for National Statistics (ONS), National Records of Scotland (NRS), and Northern Ireland Statistics and Research Agency (NISRA) publish weekly data on deaths. We used mortality data up to 22nd May in the ONS and the NISRA and 24th May in the NRS. Crude mortality for non-COVID deaths (where there is no mention of COVID-19 on the death certificate) calculated. Excess mortality defined as difference between observed mortality and expected average of mortality from previous 5 years. ResultsThere were 56,961 excess deaths and 8,986 were non-COVID excess deaths. England had the highest number of excess deaths per 100,000 population (85) and Northern Ireland the lowest (34). Non-COVID mortality increased from 23rd March and returned to the 5-year average on 10th May. In Scotland, where underlying cause mortality data besides COVID-related deaths was available, the percentage excess over the 8-week period when COVID-related mortality peaked was: dementia 49%, other causes 21%, circulatory diseases 10%, and cancer 5%. We developed an online tool (TRACKing Excess Deaths - TRACKED) to allow dynamic exploration and visualisation of the latest mortality trends (http://trackingexcessdeaths.com). ConclusionsContinuous monitoring of excess mortality trends and further integration of age- and gender-stratified and underlying cause of death data beyond COVID-19 will allow dynamic assessment of the impacts of indirect and direct mortality of the COVID-19 pandemic.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20086231

RESUMEN

Understanding the trends in causes of death for different diseases during the current COVID-19 pandemic is important to determine whether there are excess deaths beyond what is normally expected. Using the most recent report from National Records Scotland (NRS) on 29 April 2020, we examined the percentage difference in crude numbers of deaths in 2020 compared to the average for 2015-2019 by week of death within calendar year. To determine if trends were similar, suggesting underreporting/underdiagnosed COVID-19 related deaths, we also looked at the trends in % differences for cardiovascular disease deaths. From the first 17 weeks of data, we found a peak in excess deaths at week 14 of 2020, about four weeks after the first case in Scotland was detected on 1 March 2020-- but by week 17 these excesses had returned to normal levels, 4 weeks after lockdown in the UK began. Similar observations were seen for cardiovascular disease-related deaths. These observations suggest that the short-term increase in excess cancer and cardiovascular deaths might be associated with undetected/unconfirmed deaths related to COVID-19. Both of these conditions make patients more susceptible to infection and lack of widespread access to testing for COVID-19 are likely to have resulted in under-estimation of COVID-19 mortality. These data further suggest that the cumulative toll of COVID-19 on mortality is likely undercounted. More detailed analysis is needed to determine if these excesses were directly or indirectly related to COVID-19. Disease specific mortality will need constant monitoring for the foreseeable future as changes occur in increasing capacity and access to testing, reporting criteria, changes to health services and different measures are implemented to control the spread of the COVID-19. Multidisciplinary, multi-institutional, national and international collaborations for complementary and population specific data analysis is required to respond and mitigate adverse effects of the COVID-19 pandemic and to inform planning for future pandemics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA