Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39271581

RESUMEN

PURPOSE: To investigate the potential correlation between prolonged exposure to microgravity on the International Space Station and increased intracranial fluid pressure, which is considered a risk factor for the astronauts' vision, and to explore the feasibility of using distortion product otoacoustic emissions as a non-invasive in-flight monitor for intracranial pressure changes. METHODS: Distortion product otoacoustic emission phase measurements were taken from both ears of five astronauts pre-flight, in-flight, and post-flight. These measurements served as indirect indicators of intracranial pressure changes, given their high sensitivity to middle ear transmission alterations. The baseline pre-flight ground measurements were taken in the seated upright position. RESULTS: In-flight measurements revealed a significant systematic increase in otoacoustic phase, indicating elevated intracranial pressure during spaceflight compared to seated upright pre-flight ground baseline. Noteworthy, in two astronauts, strong agreement was also observed between the time course of the phase changes measured in the two ears during and after the mission. Reproducibility and stability of the probe placement in the ear canal were recognized as a critical issue. CONCLUSIONS: The study suggests that distortion product otoacoustic emissions hold promise as a non-invasive tool for monitoring intracranial pressure changes in astronauts during space missions. Pre-flight measurements in different body postures and probe fitting strategies based on the individual ear morphology are needed to validate and refine this approach.

2.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37050619

RESUMEN

LIDAL (Light Ion Detector for ALTEA, Anomalous Long-Term Effects on Astronauts) is a radiation detector designed to measure the flux, the energy spectra and, for the first time, the time-of-flight of ions in a space habitat. It features a combination of striped silicon sensors for the measurement of deposited energy (using the ALTEA device, which operated from 2006 to 2012 in the International Space Station) and fast scintillators for the time-of-flight measurement. LIDAL was tested and calibrated using the proton beam line at TIFPA (Trento Institute for Fundamental Physics Application) and the carbon beam line at CNAO (National Center for Oncology Hadron-therapy) in 2019. The performance of the time-of-flight system featured a time resolution (sigma) less than 100 ps. Here, we describe the detector and the results of these tests, providing ground calibration curves along with the methodology established for processing the detector's data. LIDAL was uploaded in the International Space Station in November 2019 and it has been operative in the Columbus module since January 2020.

3.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 4): 773-6, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12657808

RESUMEN

(PPG)(10) crystallization experiments onboard the ISS using the Advanced Protein Crystallization Facility have shown parallel and coherent crystal motions. The residual acceleration profiles and the History of the ISS Increment 3 mission allow a quantitative interpretation of these motions. Two events determine the observed crystal motions: the undocking of the Space Shuttle and a change in the ISS attitude required for power generation. No correlation between these motions and the crystal quality is apparent.


Asunto(s)
Colágeno/química , Péptidos/química , Vuelo Espacial , Ingravidez , Cristalización , Sefarosa
4.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 10 Pt 1): 1628-32, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12351875

RESUMEN

This paper reports experimental results and modelling on the crystallisation processes induced by counter diffusion method of a precipitant agent in a lysozyme protein solution. Comparison between experimental observations and numerical simulations in the presence of convection and sedimentation and without them (suppressed using gel) provides a validation of the model. Different values of the initial protein concentration are used, in order to investigate the effects of supersaturation conditions on the process, and in particular on nucleation. The model and the experimental approach may represent a useful methodology for the determination of the parameters and conditions that may lead to protein crystallisation. A Mach-Zehnder interferometer is used to monitor the transport dynamics in situ in the fluid phase by observing the compositional field. The effect of the solute transport gives rise to a "nucleation front" that propagates inside the protein solution. The crystal formation, caused by progressing of the front, results in a modulation in time and in space (similar to Liesegang patterns), due to the non-linear interplay among transport, crystal nucleation and growth. Both experimental observation and numerical modelling show spatial and size distributions of crystals that demonstrate comparable evidences of the phenomena.


Asunto(s)
Cristalización/métodos , Animales , Precipitación Química , Cristalización/estadística & datos numéricos , Difusión , Interferometría , Modelos Químicos , Muramidasa/química , Soluciones
5.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 10 Pt 1): 1681-9, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12351886

RESUMEN

Mach-Zehnder interferometry is applied to quantitatively characterize growth of lysozyme crystals in microgravity. Experiments were performed by the Free Interface Diffusion technique into APCF FID reactors using large seeds. Tracking of the experiments using interferometry allowed to monitor the onset of supersaturation and the seed growth. A large and stable concentration depletion zone around the growing crystal developed, whose time evolution was analyzed. The interferograms were analyzed taking into account finite thickness of the cell by integrating the concentration over the straight lines through the optical path. It was concluded that there may be a quasi-steady state growth mode at the stage when the spacial concentration distribution did not change but its absolute value over all the cell was slowly diminishing. From this portion of the data, an estimate was made of the dimensionless parameter beta R/D where beta is the face kinetic coefficient, R is the effective crystal size and D is the lysozyme diffusivity in solution, as followed from the steady state model. For the assumed quasi steady state data portion, the parameter varies between 0.7 and 0.9 suggesting mixed diffusion-interface kinetic controlled growth.


Asunto(s)
Cristalización/métodos , Muramidasa/química , Animales , Difusión , Interferometría , Cinética , Modelos Químicos , Ingravidez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA