Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(8): e0272373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35913973

RESUMEN

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) patients frequently require mechanical ventilation (MV) and undergo prolonged periods of bed rest with restriction of activities during the intensive care unit (ICU) stay. Our aim was to address the degree of mobilization in critically ill patients with COVID-19 undergoing to MV support. METHODS: Retrospective single-center cohort study. We analyzed patients' mobility level, through the Perme ICU Mobility Score (Perme Score) of COVID-19 patients admitted to the ICU. The Perme Mobility Index (PMI) was calculated [PMI = ΔPerme Score (ICU discharge-ICU admission)/ICU length of stay], and patients were categorized as "improved" (PMI > 0) or "not improved" (PMI ≤ 0). Comparisons were performed with stratification according to the use of MV support. RESULTS: From February 2020, to February 2021, 1,297 patients with COVID-19 were admitted to the ICU and assessed for eligibility. Out of those, 949 patients were included in the study [524 (55.2%) were classified as "improved" and 425 (44.8%) as "not improved"], and 396 (41.7%) received MV during ICU stay. The overall rate of patients out of bed and able to walk ≥ 30 meters at ICU discharge were, respectively, 526 (63.3%) and 170 (20.5%). After adjusting for confounders, independent predictors of improvement of mobility level were frailty (OR: 0.52; 95% CI: 0.29-0.94; p = 0.03); SAPS III Score (OR: 0.75; 95% CI: 0.57-0.99; p = 0.04); SOFA Score (OR: 0.58; 95% CI: 0.43-0.78; p < 0.001); use of MV after the first hour of ICU admission (OR: 0.41; 95% CI: 0.17-0.99; p = 0.04); tracheostomy (OR: 0.54; 95% CI: 0.30-0.95; p = 0.03); use of extracorporeal membrane oxygenation (OR: 0.21; 95% CI: 0.05-0.8; p = 0.03); neuromuscular blockade (OR: 0.53; 95% CI: 0.3-0.95; p = 0.03); a higher Perme Score at admission (OR: 0.35; 95% CI: 0.28-0.43; p < 0.001); palliative care (OR: 0.05; 95% CI: 0.01-0.16; p < 0.001); and a longer ICU stay (OR: 0.79; 95% CI: 0.61-0.97; p = 0.04) were associated with a lower chance of mobility improvement, while non-invasive ventilation within the first hour of ICU admission and after the first hour of ICU admission (OR: 2.45; 95% CI: 1.59-3.81; p < 0.001) and (OR: 2.25; 95% CI: 1.56-3.26; p < 0.001), respectively; and vasopressor use (OR: 2.39; 95% CI: 1.07-5.5; p = 0.03) were associated with a higher chance of mobility improvement. CONCLUSION: The use of MV reduced mobility status in less than half of critically ill COVID-19 patients.


Asunto(s)
COVID-19 , Respiración Artificial , COVID-19/terapia , Estudios de Cohortes , Enfermedad Crítica/terapia , Humanos , Unidades de Cuidados Intensivos , Estudios Retrospectivos
2.
PLoS One ; 16(4): e0250180, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33882081

RESUMEN

INTRODUCTION: The Coronavirus Disease 2019 (COVID-19) outbreak is evolving rapidly worldwide. Data on the mobility level of patients with COVID-19 in the intensive care unit (ICU) are needed. OBJECTIVE: To describe the mobility level of patients with COVID-19 admitted to the ICU and to address factors associated with mobility level at the time of ICU discharge. METHODS: Single center, retrospective cohort study. Consecutive patients admitted to the ICU with confirmed COVID-19 infection were analyzed. The mobility status was assessed by the Perme Score at admission and discharge from ICU with higher scores indicating higher mobility level. The Perme Mobility Index (PMI) was calculated [PMI = ΔPerme Score (ICU discharge-ICU admission)/ICU length of stay]. Based on the PMI, patients were divided into two groups: "Improved" (PMI > 0) and "Not improved" (PMI ≤ 0). RESULTS: A total of 136 patients were included in this analysis. The hospital mortality rate was 16.2%. The Perme Score improved significantly when comparing ICU discharge with ICU admission [20.0 (7-28) points versus 7.0 (0-16) points; P < 0.001]. A total of 88 patients (64.7%) improved their mobility level during ICU stay, and the median PMI of these patients was 1.5 (0.6-3.4). Patients in the improved group had a lower duration of mechanical ventilation [10 (5-14) days versus 15 (8-24) days; P = 0.021], lower hospital length of stay [25 (12-37) days versus 30 (11-48) days; P < 0.001], and lower ICU and hospital mortality rate. Independent predictors for mobility level were lower age, lower Charlson Comorbidity Index, and not having received renal replacement therapy. CONCLUSION: Patients' mobility level was low at ICU admission; however, most patients improved their mobility level during ICU stay. Risk factors associated with the mobility level were age, comorbidities, and use of renal replacement therapy.


Asunto(s)
COVID-19/fisiopatología , Limitación de la Movilidad , Anciano , Anciano de 80 o más Años , Brasil/epidemiología , COVID-19/epidemiología , COVID-19/terapia , Estudios de Cohortes , Cuidados Críticos , Femenino , Mortalidad Hospitalaria , Hospitalización , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Alta del Paciente , Respiración Artificial , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Resultado del Tratamiento
3.
Crit Care ; 19: 246, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26580673

RESUMEN

INTRODUCTION: A recent meta-analysis showed that weaning with SmartCare™ (Dräger, Lübeck, Germany) significantly decreased weaning time in critically ill patients. However, its utility compared with respiratory physiotherapist-protocolized weaning is still a matter of debate. We hypothesized that weaning with SmartCare™ would be as effective as respiratory physiotherapy-driven weaning in critically ill patients. METHODS: Adult critically ill patients mechanically ventilated for more than 24 hours in the adult intensive care unit of the Albert Einstein Hospital, São Paulo, Brazil, were randomly assigned to be weaned either by progressive discontinuation of pressure support ventilation (PSV) with SmartCare™. Demographic data, respiratory function parameters, level of PSV, tidal volume (VT), positive end-expiratory pressure (PEEP), inspired oxygen fraction (FIO2), peripheral oxygen saturation (SpO2), end-tidal carbon dioxide concentration (EtCO2) and airway occlusion pressure at 0.1 second (P0.1) were recorded at the beginning of the weaning process and before extubation. Mechanical ventilation time, weaning duration and rate of extubation failure were compared. RESULTS: Seventy patients were enrolled 35 in each group. There was no difference between the two groups concerning age, sex or diagnosis at study entry. There was no difference in maximal inspiratory pressure, maximal expiratory pressure, forced vital capacity or rapid shallow breathing index at the beginning of the weaning trial. PEEP, VT, FIO2, SpO2, respiratory rate, EtCO2 and P0.1 were similar between the two groups, but PSV was not (median: 8 vs. 10 cmH2O; p =0.007). When the patients were ready for extubation, PSV (8 vs. 5 cmH2O; p =0.015) and PEEP (8 vs. 5 cmH2O; p <0.001) were significantly higher in the respiratory physiotherapy-driven weaning group. Total duration of mechanical ventilation (3.5 [2.0-7.3] days vs. 4.1 [2.7-7.1] days; p =0.467) and extubation failure (2 vs. 2; p =1.00) were similar between the two groups. Weaning duration was shorter in the respiratory physiotherapy-driven weaning group (60 [50-80] minutes vs. 110 [80-130] minutes; p <0.001). CONCLUSION: A respiratory physiotherapy-driven weaning protocol can decrease weaning time compared with an automatic system, as it takes into account individual weaning difficulties. TRIAL REGISTRATION: Clinicaltrials.gov Identifier: NCT02122016 . Date of Registration: 27 August 2013.


Asunto(s)
Extubación Traqueal/métodos , Enfermedad Crítica/terapia , Sistemas de Apoyo a Decisiones Clínicas/instrumentación , Unidades de Cuidados Intensivos , Modalidades de Fisioterapia/normas , Respiración Artificial , Desconexión del Ventilador/métodos , Adulto , Anciano , Anciano de 80 o más Años , Extubación Traqueal/instrumentación , Extubación Traqueal/normas , Brasil , Sistemas de Apoyo a Decisiones Clínicas/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Desconexión del Ventilador/instrumentación , Desconexión del Ventilador/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA