Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-28791255

RESUMEN

Corynebacterium pseudotuberculosis biovar equi is the etiologic agent of ulcerative lymphangitis. To investigate proteins that could be related to the virulence of this pathogen, we combined an experimental passage process using a murine model and high-throughput proteomics with a mass spectrometry, data-independent acquisition (LC-MSE) approach to identify and quantify the proteins released into the supernatants of strain 258_equi. To our knowledge, this approach allowed characterization of the exoproteome of a C. pseudotuberculosis equi strain for the first time. Interestingly, the recovery of this strain from infected mouse spleens induced a change in its virulence potential, and it became more virulent in a second infection challenge. Proteomic screening performed from culture supernatant of the control and recovered conditions revealed 104 proteins that were differentially expressed between the two conditions. In this context, proteomic analysis of the recovered condition detected the induction of proteins involved in bacterial pathogenesis, mainly related to iron uptake. In addition, KEGG enrichment analysis showed that ABC transporters, bacterial secretion systems and protein export pathways were significantly altered in the recovered condition. These findings show that secretion and secreted proteins are key elements in the virulence and adaptation of C. pseudotuberculosis. Collectively, bacterial pathogenesis-related proteins were identified that contribute to the processes of adherence, intracellular growth and evasion of the immune system. Moreover, this study enhances our understanding of the factors that may influence the pathogenesis of C. pseudotuberculosis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Corynebacterium/microbiología , Corynebacterium pseudotuberculosis/aislamiento & purificación , Medios de Cultivo/química , Proteoma/análisis , Animales , Cromatografía Liquida , Corynebacterium pseudotuberculosis/crecimiento & desarrollo , Modelos Animales de Enfermedad , Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masas , Ratones , Proteómica
2.
Front Microbiol ; 8: 800, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28536562

RESUMEN

The human gastrointestinal tract (GIT) is highly colonized by bacterial communities, which live in a symbiotic relationship with the host in normal conditions. It has been shown that a dysfunctional interaction between the intestinal microbiota and the host immune system, known as dysbiosis, is a very important factor responsible for the development of different inflammatory conditions of the GIT, such as the idiopathic inflammatory bowel diseases (IBD), a complex and multifactorial disorder of the GIT. Dysbiosis has also been implicated in the pathogenesis of other GIT inflammatory diseases such as mucositis usually caused as an adverse effect of chemotherapy. As both diseases have become a great clinical problem, many research groups have been focusing on developing new strategies for the treatment of IBD and mucositis. In this review, we show that lactic acid bacteria (LAB) have been capable in preventing and treating both disorders in animal models, suggesting they may be ready for clinical trials. In addition, we present the most current studies on the use of wild type or genetically engineered LAB strains designed to express anti-inflammatory proteins as a promising strategy in the treatment of IBD and mucositis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA