Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Trop Anim Health Prod ; 56(6): 214, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004692

RESUMEN

This meta-analysis aims to investigate the effects of residual feed intake (RFI) phenotype on performance, nutrient utilization and meat quality traits in Zebu (Bos indicus) cattle. Twenty-three peer-reviewed publications with 37 treatment means were included in the dataset. Weighted mean difference analysis compared animals categorized into low RFI (more efficient) versus medium or high RFI (less efficient) groups. Data heterogeneity via meta-regression and subgroup analysis, considering variables such as animal age, sex class, experimental duration, RFI group, dietary concentrate, and estimated metabolizable energy intake were also explored. The predominant genetic group of cattle in the dataset was Nellore (89.18%), followed by Brahman (10.81%). More efficient animals (low RFI phenotype) exhibited less dry matter intake (DMI; P < 0.010) than medium or high RFI animals (-0.95 kg vs. -0.42 kg/d). Cattle dietary crude protein and fiber digestibility were consistent across RFI groups (P > 0.05), while dietary ether extract digestibility tended to decrease (P = 0.050) in low RFI animals (-13.20 g/kg DM). Low RFI animals tended to increased (P = 0.065) ribeye area (REA) compared to the high/medium RFI groups, while carcass backfat thickness (BFT) decreased (P = 0.042) compared to high/medium RFI groups. Moreover, there was an increase (P < 0.001) of 0.22 kg in Warner-Bratzler shear force (WBSF) and a reduction (P < 0.001) in the myofibrillar fragmentation index (MFI) in low RFI animals. Meat color parameters (lightness [L*] and yellowness [b*]) and visual marbling scores were consistent (P > 0.05) across RFI groups. In conclusion, Zebu cattle classified as efficient (low RFI) exhibited reduced DMI, which improves their feed efficiency. However, BFT and meat quality parameters such as tenderness (WBSF and MFI) and redness [a*] were compromised by low RFI phenotype, highlighting the challenge of enhancing feed efficiency and meat quality traits in Zebu cattle.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Animales , Bovinos/fisiología , Femenino , Masculino , Alimentación Animal/análisis , Dieta/veterinaria , Fenotipo , Carne Roja/análisis
2.
Transl Anim Sci ; 8: txae003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375404

RESUMEN

The objective was to examine the effects of metabolizable protein (MP) and ruminal-protected methionine supplementation on growth performance of Holstein steer calves during the initial feedlot growing phase (112 d). One hundred eighty Holstein steer calves (122 ±â€…7 kg) were blocked by weight and assigned to 30 pens (6 steers per pen). Five treatments were applied: 1) control, a diet based on steam-flaked corn containing urea and dry distillers grains plus solubles as supplemental N sources with no amino acid addition; 2) control diet plus blood meal supplementation; 3) diet from treatment 2, with 0.064% Smartamine M (70% methionine; Adisseo, Alpharetta, GA) supplementation; 4) diet from treatment 2 with 0.096% Smartamine M supplementation; 5) diet from treatment 2 with 0.128% Smartamine M supplementation. All diets were formulated to exceed the estimated MP requirements. The estimated metabolizable lysine, as well as methionine, was deficient in the control diet. Blood meal was added to the control diet to meet estimated lysine requirements (diet 2), the other diets had increasing concentrations of supplemental methionine. Supplemental MP enhanced (10%, P < 0.02) interim and overall 112-d average daily gain (ADG). Additional effects of supplemental methionine on ADG were not appreciable (P > 0.10). Supplemental MP did not affect (P > 0.10) dry matter intake (DMI) during the first 56-d period; however, it tended to increase (P = 0.08) DMI during the subsequent 56-d period. Overall, supplemental MP or methionine had no appreciable effect (P > 0.10) on DMI. Supplemental MP improved (P < 0.01) gain efficiency and estimated dietary net energy (NE) values during the initial 56-d period (11 and 7%, respectively) and overall (7 and 4%, respectively). Supplemental MP did not affect (P > 0.10) gain efficiency during the second 56-d period, although it tended to enhance (P = 0.08) estimated dietary NE. Supplemental methionine did not appreciably affect (P > 0.10) gain efficiency or estimated dietary NE. Therefore, adding MP to cover the estimated limiting amino acid supply in diets may enhance the gain efficiency and dietary energetics of growing Holstein calves. However, amino acid addition supplementation beyond the requirements may not produce extra productive performance of steer calves.

3.
Transl Anim Sci ; 4(4): txaa190, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33324961

RESUMEN

The objectives of the study were to determine the effect of coated or noncoated hormone implants on growth performance, carcass characteristics, and serum estradiol-17ß (E2) concentrations of Holstein steers fed a grain-based diet for 112 d. Seventy-nine Holstein steers [average initial body weight (BW) = 452 ± 5.5 kg] were stratified by BW and allotted to one of two treatments: 1) Holstein steers implanted with a coated implant containing 200 mg of trenbolone acetate (TBA) and 40 mg E2 (Revalor-XS (Merck Animal Health; Summit, NJ)] on day 0 (XS) or 2) Holstein steers implanted two times (days 0 and 56) with a noncoated implant containing 80 mg of TBA and 16 mg of E2 [(2IS) Revalor-IS (Merck Animal Health)]. Data were analyzed using the MIXED procedure of SAS (SAS Inst. Inc., Cary, NC). There was no effect (P ≥ 0.71) of implant strategy on initial, middle, and final BW. No effect (P ≥ 0.12) of implant strategy was observed on average daily gain, dry matter intake, or gain-to-feed ratio. There were no effects (P ≥ 0.11) of implant strategy on carcass characteristics. There was an implant × day interaction (P < 0.01) for the circulation of serum E2 concentrations. Serum E2 concentration increased similarly 14 d after Holstein steers were implanted, regardless of implant strategy. At 28 d, after steers were implanted, steers in the XS group had less serum E2 concentration than Holstein steers in the 2IS group. However, at 56 d after the first implantation, both groups, once again, had similar serum E2 concentrations and E2 concentrations were less on day 56 than day 28 for both strategies. Holstein steers implanted with 2IS had greater serum E2 concentration on day 70 and E2 concentrations remained greater than serum E2 of Holstein steers implanted XS for the duration of the trial (day 112). In summary, there was no effect of coated or two doses of noncoated implant on growth performance or carcass characteristics of Holstein steers.

4.
Transl Anim Sci ; 4(1): 141-148, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32704974

RESUMEN

Objectives were to compare in vitro and in situ disappearance of dry matter (DM), neutral detergent fiber (NDF), and starch of traditional (unprocessed and rolled) and hulless (unprocessed) barley. Experiment 1: three barley sources were compared using in vitro techniques. The sources were: 1) traditional barley that was not processed, 2) traditional barley processed through a roller mill, and 3) hulless barley that was not processed. For in vitro incubation, each barley source was ground through a 1-mm screen. Ground barley sources were weighed into bags (25 micron porosity) and incubated in ruminal fluid from two steers fed 80% rolled corn for 3, 6, 12, 24, 48, or 72 h. Intact bags were assayed for NDF; remaining bags were opened and the residual was removed and analyzed to determine disappearance of DM and starch. Experiment 2: the barley sources used in Exp. 1 were compared using in situ techniques. For in situ analysis, each barley source was ground in a Wiley mill with no screen to mimic mastication. Artificially masticated samples were weighed into Dacron bags (50 ± 10 micron porosity) and incubated in eight ruminally fistulated steers (n = 8) for 3, 6, 12, 24, 48, and 72 h. Residual contents were analyzed to determine in situ disappearance of DM, NDF, and starch. Data were analyzed using the MIXED procedures of SAS (9.4 SAS Institute, Cary, NC) with repeated measures. DM disappearance was greatest (P < 0.05) for hulless barley in vitro and for rolled barley in situ, regardless of time postincubation. For both trials, NDF disappearance was greatest (P < 0.05) for hulless barley, regardless of time postincubation. Starch disappearance at all time points was greatest (P < 0.05) for rolled barley in situ. Starch disappearance was greater (P < 0.05) for hulless barley at 6 h of in vitro incubation compared to rolled and unprocessed barley, whereas starch disappearance in vitro was comparable (P = 0.60) between barley sources. When the grains were compared in vitro, minor differences were noted, presumably because barley sources were finely ground prior to incubation. Compared to in vitro estimates, in situ techniques had greater variation in ruminal degradation estimates. Differences observed between in situ and in vitro techniques are driven largely by differences between the procedures. Although laboratory methods are widely used to estimate ruminal degradation, these techniques did not provide comparable estimates of ruminal degradation of barley.

5.
J Anim Sci ; 98(5)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32271920

RESUMEN

The objectives of this study were to compare ruminal total tract digestibility, bacterial communities, and eating and rumination activity between Holstein and Angus steers fed grain- or forage-based diets. Six Holstein steers (average body weight [BW] = 483 ± 23 kg) and six Angus steers (average BW = 507 ± 29 kg), previously fitted with rumen cannulae, were fed in a crossover design with a 2 × 2 factorial arrangement of four treatments: 1) Holsteins fed a grain-based diet, 2) Holsteins fed a forage-based diet, 3) Angus fed a grain-based diet, and 4) Angus fed a forage-based diet. Each period was 35 d with 26 d of diet adaptation and 9 d of sample collection. On days 1 and 2 of collection, feeding activity was recorded for 48 h. On day 3, rumen contents were sampled to measure ruminal pH at 0, 3, 6, 12, and 18 h after feeding. A portion of the strained ruminal fluid was subsampled at 0, 3, and 6 h for volatile fatty acids (VFA) analysis. Rumen contents were subsampled at 3 h for analysis of bacterial communities. From day 4 to 8, total fecal excretion, feed, and refusals samples were collected and analyzed for dry matter (DM), neutral detergent fiber (NDF), and starch. On days 8 and 9 (0 and 3 h post-feeding, respectively), total reticulorumen evacuation was conducted and contents were weighed. Data were analyzed using the MIXED procedures in SAS (v9.4 SAS Inst. Inc., Cary, NC). Repeated measures were used to analyze changes in ruminal pH and VFA over time. There were no interactions of diet × breed (P ≥ 0.07). While the main effects of diet were expected, unique to these data is the fact that bacterial diversity and richness were reduced (P < 0.01) in cattle fed grain-based diets. There was no main effect (P > 0.34) of breed on total tract DM, organic matter, and starch digestibility, but Angus cattle had greater (P = 0.01) NDF digestibility than Holsteins. The increased NDF digestibility may be associated with a numerical (P = 0.08) increased numbers of bacterial species in Angus steers compared with Holstein steers. Holstein steers also spent more time (P ≤ 0.05) ruminating than Angus steers. There was no effect (P > 0.80) of breed on reticulorumen content at feeding time; however, Holstein steers had greater (P = 0.04) reticulorumen content on a wet basis 3 h post-feeding. Although Holstein steers spent more time ruminating, Angus steers were better able to digest NDF when compared with Holsteins, regardless of basal diet, and this improvement may be related to changes in bacterial communities in the rumen or to rumination activity.


Asunto(s)
Alimentación Animal/análisis , Bovinos/fisiología , Fibras de la Dieta/metabolismo , Ácidos Grasos Volátiles/análisis , Microbioma Gastrointestinal , Animales , Peso Corporal , Cruzamiento , Bovinos/microbiología , Estudios Cruzados , Dieta/veterinaria , Digestión , Ingestión de Alimentos , Grano Comestible , Fermentación , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiología , Masculino , Rumen/microbiología , Rumen/fisiología , Almidón/metabolismo
6.
Transl Anim Sci ; 3(4): 1106-1111, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32704874

RESUMEN

The objectives were to determine the efficacy of sheep as a digestibility model for cattle feeding two diets, forage or concentrate based, under current genetics. Twelve Suffolk wethers were blocked into two periods with six wethers in each period. Within each period, wethers were fed a forage-based diet (n = 3) or a concentrate-based diet (n = 3). Six angus steers were also fed a forage-based diet (n = 3) or a concentrate-based diets (n = 3) in switchback design with two periods. All animals were adapted to diets for a minimum of 3 wk, then feed intake, refusals, and feces were collected. Feed and fecal dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF), and starch were analyzed. Refusals were analyzed for DM. Data were analyzed using Proc Mixed in SAS with diet and species as fixed and period as a random effect. Dry matter intake as percentage of body weight for each animal within each period was used as a covariable. There was an interaction (P < 0.01) between species and diet for DM and OM digestibility. When fed the concentrate-based diet, DM and OM digestibility were similar between wethers and steers (P > 0.18); however, when fed the forage-based diet, DM and OM digestibility was less (P < 0.01) for wethers than steers. Like DM and OM, an interaction (P < 0.05) between species and diet was present for starch digestibility. When fed the forage-based diet, starch digestibility did not differ (P = 0.66) between wethers and steers; however, when fed concentrate-based diet, wethers had a greater starch digestibility (P < 0.05) than steers. There was no interaction (P > 0.45) between species and diet for NDF and ADF digestibility. Regardless of the diet fed, NDF and ADF digestibilities were greater (P < 0.05) in steers than wethers. Present day sheep were not a good model for cattle when fed forage-based diets, but sheep were an acceptable model for cattle when fed concentrate-based diets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA