RESUMEN
Liver cancers, including hepatocellular carcinoma (HCC), are the sixth most common cancer and the third leading cause of cancer-related death worldwide, representing a global public health problem. This study evaluated nine patients with HCC. Six of the cases involved hepatic explants, and three involved hepatic segmentectomy for tumor resection. Eight out of nine tumors were HCC, with one being a combined hepatocellular-cholangiocarcinoma tumor. Conventional markers of hepatocellular differentiation (Hep Par-1, arginase, pCEA, and glutamine synthetase) were positive in all patients, while markers of hepatic precursor cells (CK19, CK7, EpCAM, and CD56) were negative in most patients, and when positive, they were detected in small, isolated foci. Based on in silico analysis of HCC tumors from The Cancer Genome Atlas database, we found that Hedgehog (HH) pathway components (GLI1, GLI2, GLI3 and GAS1) have high connectivity values (module membership > 0.7) and are strongly correlated with each other and with other genes in biologically relevant modules for HCC. We further validated this finding by analyzing the gene expression of HH components (PTCH1, GLI1, GLI2 and GLI3) in our samples through qPCR, as well as by immunohistochemical analysis. Additionally, we conducted a chemosensitivity analysis using primary HCC cultures treated with a panel of 18 drugs that affect the HH pathway and/or HCC. Most HCC samples were sensitive to sunitinib. Our results offer a comprehensive view of the molecular landscape of HCC, highlighting the significance of the HH pathway and providing insight into focused treatments for HCC.
Asunto(s)
Carcinoma Hepatocelular , Proteínas Hedgehog , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Transducción de Señal , Sunitinib/farmacología , Sunitinib/uso terapéutico , Adulto , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Gli2 con Dedos de Zinc/genéticaRESUMEN
Herein, ruthenium complexes containing heterocyclic thioamidates [Ru(mmi)(bipy)(dppb)]PF6 (1), [Ru(tzdt)(bipy)(dppb)]PF6 (2), [Ru(dmp)(bipy)(dppb)]PF6 (3) and [Ru(mpca)(bipy)(dppb)]PF6 (4) were investigated for their cellular and molecular effects in cancer cell lines. Complexes 1 and 2 were the most potent of the four compounds against a panel of different cancer cell lines in monolayer cultures and showed potent cytotoxicity in a 3D model of multicellular spheroids that formed from human hepatocellular carcinoma HepG2 cells. In addition, both complexes were able to bind to DNA in a calf thymus DNA model. Compared to the controls, a reduction in cell proliferation, phosphatidylserine externalization, internucleosomal DNA fragmentation, and the loss of the mitochondrial transmembrane potential were observed in HepG2 cells that were treated with these complexes. Additionally, coincubation with a pan-caspase inhibitor (Z-VAD(OMe)-FMK) reduced the levels of apoptosis that were induced by these compounds compared to those in the negative controls, indicating that cell death through apoptosis occurred via a caspase-dependent pathway. Moreover, these complexes also induced the phosphorylation of ERK1/2, and coincubation with an MEK inhibitor (U0126), which is known to inhibit the activation of ERK1/2, but not JNK/SAPK and p38 MAPK inhibitors, reduced the complexes-induced apoptosis compared to that in the negative controls, indicating that the induction of apoptotic cell death occurred through ERK1/2 signaling in HepG2 cells. On the other hand, no increase in oxidative stress was observed in HepG2 cells treated with the complexes, and the complexes-induced apoptosis was not reduced with coincubation with the antioxidant N-acetylcysteine or a p53 inhibitor compared to that in the negative controls, indicating that apoptosis occurred via oxidative stress- and p53-independent pathways. Finally, these complexes also reduced the growth of HepG2 cells that were engrafted in C.B-17 SCID mice compared to that in the negative controls. These results indicated that these complexes are novel anticancer drug candidates for liver cancer treatment.
RESUMEN
Ruthenium-based compounds have gained great interest due to their potent cytotoxicity in cancer cells; however, much of their potential applications remain unexplored. In this paper, we report the synthesis of a novel ruthenium complex with xanthoxylin (RCX) and the investigation of its cellular and molecular action in human hepatocellular carcinoma HepG2 cells. We found that RCX exhibited a potent cytotoxic effect in a panel of cancer cell lines in monolayer cultures and in a 3D model of multicellular cancer spheroids formed from HepG2 cells. This compound is detected at a high concentration in the cell nuclei, induces DNA intercalation and inhibits DNA synthesis, arresting the cell cycle in the S-phase, which is followed by the activation of the caspase-mediated apoptosis pathway in HepG2 cells. Gene expression analysis revealed changes in the expression of genes related to cell cycle control, apoptosis and the MAPK pathway. In addition, RCX induced the phosphorylation of ERK1/2, and pretreatment with U-0126, an MEK inhibitor known to inhibit the activation of ERK1/2, prevented RCX-induced apoptosis. In contrast, pretreatment with a p53 inhibitor (cyclic pifithrin-α) did not prevent RCX-induced apoptosis, indicating the activation of a p53-independent apoptosis pathway. RCX also presented a potent in vivo antitumor effect in C.B-17 SCID mice engrafted with HepG2 cells. Altogether, these results indicate that RCX is a novel anticancer drug candidate.
Asunto(s)
Acetofenonas/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Rutenio/farmacología , Fase S/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Acetofenonas/síntesis química , Acetofenonas/química , Animales , Antineoplásicos/farmacología , Inhibidores de Caspasas/farmacología , Caspasas/metabolismo , ADN/biosíntesis , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Sustancias Intercalantes/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones SCID , Modelos Biológicos , Inhibidores de Proteínas Quinasas/farmacología , Espectroscopía de Protones por Resonancia Magnética , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Eudesmols are naturally occurring sesquiterpenoid alcohols that present cytotoxic effect to cancer cells. Herein, all eudesmol isomers displayed cytotoxicity to different tumour cell lines. α-Eudesmol showed IC50 values ranging from 5.38 ± 1.10 to 10.60 ± 1.33 µg/mL for B16-F10 and K562 cell lines, ß-eudesmol showed IC50 values ranging from 16.51 ± 1.21 to 24.57 ± 2.75 µg/mL for B16-F10 and HepG2 cell lines, and γ-eudesmol showed IC50 values ranging from 8.86 ± 1.27 to 15.15 ± 1.06 µg/mL for B16-F10 and K562 cell lines, respectively. In addition, in this work, we studied the mechanisms of cytotoxic action of eudesmol isomers (α-, ß- and γ-eudesmol) in human hepatocellular carcinoma HepG2 cells. After 24-hr incubation, HepG2 cells treated with eudesmol isomers presented typical hallmarks of apoptosis, as observed by morphological analysis in cells stained with haematoxylin-eosin and acridine orange/ethidium bromide. None of eudesmol isomers caused membrane disruption at any concentration tested. Moreover, eudesmol isomers induced loss of mitochondrial membrane potential and an increase in caspase-3 activation in HepG2 cells, suggesting the induction of caspase-mediated apoptotic cell death. In conclusion, the eudesmol isomers herein investigated are able to reduce cell proliferation and to induce tumour cell death by caspase-mediated apoptosis pathways.
Asunto(s)
Apoptosis/efectos de los fármacos , Sesquiterpenos de Eudesmano/farmacología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Células K562 , Potencial de la Membrana Mitocondrial/efectos de los fármacosRESUMEN
Medicinal plants are one of the most important sources of drugs used in the pharmaceutical industry. Among traditional medicinal plants, Lippia gracilis Schauer (Verbenaceae) had been used for several medicinal purposes in Brazilian northeastern. In this study, leaf essential oil (EO) of L. gracilis was prepared using hydrodistillation. Followed by GC-MS analysis, its composition was characterized by the presence of thymol (55.50%), as major constituent. The effects of EO on cell proliferation and apoptosis induction were investigated in HepG2 cells. Furthermore, mice bearing Sarcoma 180 tumor cells were used to confirm its in vivo effectiveness. EO and its constituents (thymol, p-cymene, γ-terpinene and myrcene) displayed cytotoxicity to different tumor cell lines. EO treatment caused G1 arrest in HepG2 cells accompanied by the induction of DNA fragmentation without affecting cell membrane integrity. Cell morphology consistent with apoptosis and a remarkable activation of caspase-3 were also observed, suggesting induction of caspase-dependent apoptotic cell death. In vivo antitumor study showed tumor growth inhibition rates of 38.5-41.9%. In conclusion, the tested essential oil of L. gracilis leaves, which has thymol as its major constituent, possesses significant in vitro and in vivo antitumor activity. These data suggest that leaf essential oil of L. gracilis is a potential medicinal resource.