RESUMEN
Genetic and genomic analyses of longitudinal traits related to milk production efficiency are paramount for optimizing water buffaloes breeding schemes. Therefore, this study aimed to (1) compare single-trait random regression models under a single-step genomic BLUP setting based on alternative covariance functions (i.e., Wood, Wilmink, and Ali and Schaeffer) to describe milk (MY), fat (FY), protein (PY), and mozzarella (MZY) yields, fat-to-protein ratio (FPR), somatic cell score (SCS), lactation length (LL), and lactation persistency (LP) in Murrah dairy buffaloes (Bubalus bubalis); (2) combine the best functions for each trait under a multiple-trait framework; (3) estimate time-dependent SNP effects for all the studied longitudinal traits; and (4) identify the most likely candidate genes associated with the traits. A total of 323,140 test-day records from the first lactation of 4,588 Murrah buffaloes were made available for the study. The model included the average curve of the population nested within herd-year-season of calving, systematic effects of number of milkings per day, and age at first calving as linear and quadratic covariates, and additive genetic, permanent environment, and residual as random effects. The Wood model had the best goodness of fit based on the deviance information criterion and posterior model probabilities for all traits. Moderate heritabilities were estimated over time for most traits (0.30 ± 0.02 for MY; 0.26 ± 0.03 for FY; 0.45 ± 0.04 for PY; 0.28 ± 0.05 for MZY; 0.13 ± 0.02 for FPR; and 0.15 ± 0.03 for SCS). The heritability estimates for LP ranged from 0.38 ± 0.02 to 0.65 ± 0.03 depending on the trait definition used. Similarly, heritabilities estimated for LL ranged from 0.10 ± 0.01 to 0.14 ± 0.03. The genetic correlation estimates across days in milk (DIM) for all traits ranged from -0.06 (186-215 DIM for MY-SCS) to 0.78 (66-95 DIM for PY-MZY). The SNP effects calculated for the random regression model coefficients were used to estimate the SNP effects throughout the lactation curve (from 5 to 305 d). Numerous relevant genomic regions and candidate genes were identified for all traits, confirming their polygenic nature. The candidate genes identified contribute to a better understanding of the genetic background of milk-related traits in Murrah buffaloes and reinforce the value of incorporating genomic information in their breeding programs.