RESUMEN
The structuring of plant assemblages along environmental gradients is typically explained by shifts from competition (limiting similarity) to environmental filtering as the environment becomes more stressful. However, facilitation, weaker-competitor exclusion, environmental heterogeneity, and the colonization-competition tradeoff can also structure plant assemblages along gradients. These assembly processes act on different plant traits and organs, and their prevalence varies with respect to the spatial scale. Using patterns of functional diversity, coupled with patterns of species association at two spatial scales, here we discern the assembly processes that structure shrub communities in four localities along an aridity gradient of the Atacama Desert. At each site, we calculated functional dispersion indexes for above- and below-ground traits, and patterns of species association at a patch and neighborhood scale. Our results revealed that at the patch scale in intermediate levels of aridity, the dominant assembly process was within-site environmental heterogeneity. At the neighborhood scale, communities are assembled mainly through random processes. Nonetheless, in some communities, the dominant assembly process was competition via limiting similarity or exclusion of the weaker competitor, and these did not change along the gradient. Together, these results reveal that environmental heterogeneity and competition are the main drivers of plant community assembly in a hyper-arid environment.
Asunto(s)
Biodiversidad , Plantas , Análisis Espacial , FenotipoRESUMEN
Seed dormancy is one of the most important adaptive mechanisms in plants, optimizing germination, seedling emergence, and establishment to ensure these processes occur when environmental conditions are favorable for plant survival and growth. Endemic to rocky environments of the southern Atacama Desert, the Austral papaya (Carica chilensis) is the papaya species with the southernmost distribution within the Caricaceae, thriving in the most extreme environmental conditions. This threatened plant exhibits low natural regeneration, primarily attributed to low germination, yet no information regarding seed dormancy release is available. In this study, we investigated the dormancy-break and germination requirements of C. chilensis. We hypothesized that if C. chilensis seeds exhibit physiological dormancy, then seeds with reduced moisture content and those treated with chemicals or growth hormones would exhibit higher germination percentages and faster germination than control seeds akin to other members of Caricacea. Our results confirmed this prediction and revealed that ultra-drying (< 3% moisture content) and treating seeds with sulfuric acid, gibberellic acid, or potassium nitrate are the most effective methods for germinating C. chilensis. Consequently, we suggest using these treatments to propagate this threatened papaya species.
Asunto(s)
Carica , Germinación , Latencia en las Plantas , Plantones , Semillas , TemperaturaRESUMEN
Desert shrubs are keystone species for plant diversity and ecosystem function. Atriplex clivicola and Atriplex deserticola (Amaranthaceae) are native shrubs from the Atacama Desert that show contrasting altitudinal distribution (A. clivicola: 0-700 m.a.s.l.; A. deserticola: 1500-3000 m.a.s.l.). Both species possess a C4 photosynthetic pathway and Kranz anatomy, traits adaptive to high temperatures. Historical records and projections for the near future show trends in increasing air temperature and frequency of heat wave events in these species' habitats. Besides sharing a C4 pathway, it is not clear how their leaf-level physiological traits associated with photosynthesis and water relations respond to heat stress. We studied their physiological traits (gas exchange, chlorophyll fluorescence, water status) before and after a simulated heat wave (HW). Both species enhanced their intrinsic water use efficiency after HW but via different mechanisms. A. clivicola, which has a higher LMA than A. deserticola, enhances water saving by closing stomata and maintaining RWC (%) and leaf Ψmd potential at similar values to those measured before HW. After HW, A. deserticola showed an increase of Amax without concurrent changes in gs and a significant reduction of RWC and Ψmd. A. deserticola showed higher values of Chla fluorescence after HW. Thus, under heat stress, A. clivicola maximizes water saving, whilst A. deserticola enhances its photosynthetic performance. These contrasting (eco)physiological strategies are consistent with the adaptation of each species to their local environmental conditions at different altitudes.
RESUMEN
Harsh environmental conditions in arid ecosystems limit seedling recruitment to microhabitats under nurse structures, such as shrubs or rocks. These structures, however, do not necessarily afford the same benefits to plants because nurse rocks provide only physical nurse effects, whereas nurse plants can provide both physical and biological nurse effects. Nevertheless, if the nurse plant is a conspecific, the benefits it provides may be outweighed by higher mortality due to negative density-dependent processes; consequently, negative density-dependence is expected to limit plants from acting as nurses to their own seedlings. The degree to which an abiotic nurse may be more beneficial than a conspecific one remains largely unexplored. Here, we examine the role and elucidate the mechanisms by which conspecific plants and rocks promote plant establishment in a hyper-arid desert. For 4 years, we examined establishment patterns of Myrcianthes coquimbensis (Myrtaceae), a threatened desert shrub that recruits solely in rock cavities and under conspecific shrubs. Specifically, we characterized these microhabitats, as well as open interspaces for comparison, and conducted germination, seed removal and seedling survival experiments. Our results revealed that conspecific shrubs and nurse rocks modified environmental conditions in similar ways; soil and air temperatures were lower, and water availability was higher than in open interspaces. We found no evidence on negative density-dependent recruitment: seed removal was lowest and seedling emergence highest under conspecific plants, moreover seedling survival probabilities were similar in rock cavities and under conspecific plants. We conclude that the probability of establishment was highest under conspecific plants than in other microhabitats, contrasting what is expected under the Janzen-Connell recruitment model. We suggest that for species living in stressful environments, population regulation may be a function of positive density-dependence and intraspecific facilitation may be a process that promotes the persistence of some plant species within a community.
RESUMEN
PREMISE OF THE STUDY: Drought is the most limiting factor for plant growth and recruitment in arid environments. For widespread species, however, plant responses to drought can vary across populations because environmental conditions can vary along the range of the species. Here, we assessed whether plants of Encelia canescens from different populations along an aridity gradient in the Atacama Desert respond differently to water-deficit conditions. METHODS: We conducted a common-garden experiment using plants grown from seeds from three populations distributed along an aridity gradient to test for differences in relative growth rate (RGR), biomass, root to shoot ratios, and photosynthesis between watered and water-deficit plants. Additionally, we examined the relationship between root to shoot ratios with RGR and total plant biomass along the gradient. KEY RESULTS: Water deficit affected root to shoot ratios, biomass, and RGR, but not photosynthesis. Populations varied in RGR and biomass; plants from the most arid population had higher RGRs, but lower biomass than those from the least arid population. In watered conditions, root to shoot ratios did not vary with RGR or biomass. Conversely, with the water deficit, root to shoot ratios were negatively and positively related to biomass and RGR, respectively. CONCLUSIONS: Response to water deficit differed among E. canescens populations; plants from the lowest rainfall environment adjusted root to shoot ratios, which may have allowed for equal biomass production across treatments. In contrast, plants from the wettest population did not adjust root to shoot ratios, but were reduced in biomass. These morphological and physiological changes to water availability showed that populations can use different strategies to cope with water deficit.