Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 31(15): 5673-81, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21490208

RESUMEN

The organization of the visual system is different in birds and mammals. In both, retinal axons project topographically to the visual targets in the brain; but whereas in birds visual fibers from the entire retina decussate at the optic chiasm, in mammals, a number of axons from the temporal retina diverge at the midline to project ipsilaterally. Gain-of-function experiments in chick raised the hypothesis that the transcription factor Foxd1 specifies retinal temporal identity. However, it remains unknown whether Foxd1 is necessary for this function. In mammals, the crucial role of Foxd1 in the patterning of the optic chiasm region has complicated the interpretation of its cell-autonomous function in the retina. Furthermore, target molecules identified for Foxd1 are different in chicks and mice, leading to question the function of Foxd1 in mammals. Here we show that in the mouse, Foxd1 imprints temporal features in the retina such as axonal ipsilaterality and rostral targeting in collicular areas and that EphA6 is a Foxd1 downstream effector that sends temporal axons to the rostral colliculus. In addition, our data support a model in which the desensitization of EphA6 by ephrinA5 in cis is not necessary for the proper functioning of EphA6. Overall, these results indicate that Foxd1 functions as a conserved determinant of temporal identity but reveal that the downstream effectors, and likely their mechanisms of action, are different in mammals and birds.


Asunto(s)
Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/fisiología , Retina/crecimiento & desarrollo , Animales , Axones/fisiología , Mapeo Encefálico , Técnicas de Cocultivo , ADN/genética , Electroporación , Efrina-A5/genética , Efrina-A5/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Cuerpos Geniculados/citología , Cuerpos Geniculados/embriología , Cuerpos Geniculados/fisiología , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Plásmidos/genética , Embarazo , Receptor EphA6/genética , Receptor EphA6/fisiología , Retina/embriología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología , Colículos Superiores/citología , Colículos Superiores/embriología , Colículos Superiores/fisiología
2.
Development ; 135(10): 1833-41, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18417618

RESUMEN

Axons of retinal ganglion cells (RGCs) make a divergent choice at the optic chiasm to cross or avoid the midline in order to project to ipsilateral and contralateral targets, thereby establishing the binocular visual pathway. The zinc-finger transcription factor Zic2 and a member of the Eph family of receptor tyrosine kinases, EphB1, are both essential for proper development of the ipsilateral projection at the mammalian optic chiasm midline. Here, we demonstrate in mouse by functional experiments in vivo that Zic2 is not only required but is also sufficient to change the trajectory of RGC axons from crossed to uncrossed. In addition, our results reveal that this transcription factor regulates the expression of EphB1 in RGCs and also suggest the existence of an additional EphB1-independent pathway controlled by Zic2 that contributes to retinal axon divergence at the midline.


Asunto(s)
Axones/fisiología , Proteínas Nucleares/fisiología , Quiasma Óptico/citología , Receptor EphB1/fisiología , Factores de Transcripción/fisiología , Animales , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Quiasma Óptico/embriología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
3.
BMC Dev Biol ; 7: 103, 2007 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-17875204

RESUMEN

BACKGROUND: The neural retina is a highly structured tissue of the central nervous system that is formed by seven different cell types that are arranged in layers. Despite much effort, the genetic mechanisms that underlie retinal development are still poorly understood. In recent years, large-scale genomic analyses have identified candidate genes that may play a role in retinal neurogenesis, axon guidance and other key processes during the development of the visual system. Thus, new and rapid techniques are now required to carry out high-throughput analyses of all these candidate genes in mammals. Gene delivery techniques have been described to express exogenous proteins in the retina of newborn mice but these approaches do not efficiently introduce genes into the only retinal cell type that transmits visual information to the brain, the retinal ganglion cells (RGCs). RESULTS: Here we show that RGCs can be targeted for gene expression by in utero electroporation of the eye of mouse embryos. Accordingly, using this technique we have monitored the morphology of electroporated RGCs expressing reporter genes at different developmental stages, as well as their projection to higher visual targets. CONCLUSION: Our method to deliver ectopic genes into mouse embryonic retinas enables us to follow the course of the entire retinofugal pathway by visualizing RGC bodies and axons. Thus, this technique will permit to perform functional studies in vivo focusing on neurogenesis, axon guidance, axon projection patterning or neural connectivity in mammals.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia de Gen , Células Ganglionares de la Retina , Animales , Electroporación , Embrión de Mamíferos , Femenino , Genes Reporteros , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA