Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 17(1): 2122244, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36476262

RESUMEN

Climbing plants rely on suitable support to provide the light conditions they require in the canopy. Negative phototropism is a directional search behavior proposed to detect a support-tree, which indicates growth or movement away from light, based on light attenuation. In a Chilean temperate rainforest, we addressed whether the massive woody climber Hydrangea serratifolia (H. et A.) F. Phil (Hydrangeaceae) presents a support-tree location pattern influenced by light availability. We analyzed direction and light received in two groups of juvenile shoots: searching shoots (SS), with plagiotropic (creeping) growth vs. ascending shoots (AS), with orthotropic growth. We found that, in accordance with light attenuation, SS and AS used directional orientation to search and then ascend host trees. The light available to H. serratifolia searching shoots was less than that of the general forest understory; the directional orientation in both groups showed a significant deviation from a random distribution, with no circular statistical difference between them. Circular-linear regression indicated a relationship between directional orientations and light availability. Negative phototropism encodes the light environment's heterogeneous spatial and temporal information, guiding the shoot apex to the most shaded part of the support-tree base, the climbing start point.


Asunto(s)
Hydrangea , Hydrangeaceae , Árboles
2.
PLoS One ; 11(10): e0164844, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27776181

RESUMEN

Most climate and environmental change models predict significant increases in temperature and precipitation by the end of the 21st Century, for which the current functional output of certain symbioses may also be altered. In this context we address the following questions: 1) How the expected changes in abiotic factors (temperature, and water) differentially affect the ecophysiological performance of the plant Colobanthus quitensis? and 2) Will this environmental change indirectly affect C. quitensis photochemical performance and biomass accumulation by modifying its association with fungal endophytes? Plants of C. quitensis from King George Island in the South Shetland archipelago (62°09' S), and Lagotellerie Island in the Antarctic Peninsula (65°53' S) were put under simulated abiotic conditions in growth chambers following predictive models of global climate change (GCC). The indirect effect of GCC on the interaction between C. quitensis and fungal endophytes was assessed in a field experiment carried out in the Antarctica, in which we eliminated endophytes under contemporary conditions and applied experimental watering to simulate increased precipitation input. We measured four proxies of plant performance. First, we found that warming (+W) significantly increased plant performance, however its effect tended to be less than watering (+W) and combined warming and watering (+T°+W). Second, the presence of fungal endophytes improved plant performance, and its effect was significantly decreased under experimental watering. Our results indicate that both biotic and abiotic factors affect ecophysiological performance, and the directions of these influences will change with climate change. Our findings provide valuable information that will help to predict future population spread and evolution through using ecological niche models under different climatic scenarios.


Asunto(s)
Caryophyllaceae/fisiología , Endófitos/fisiología , Fitoquímicos/análisis , Regiones Antárticas , Biomasa , Caryophyllaceae/química , Caryophyllaceae/microbiología , Cambio Climático , Ecosistema , Temperatura
3.
Conserv Biol ; 26(4): 717-23, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22624790

RESUMEN

Few non-native species have colonized Antarctica, although increased human activity and accelerated climate change may increase their number, distributional range, and effects on native species on the continent. We searched 13 sites on the maritime Antarctic islands and 12 sites on the Antarctic Peninsula for annual bluegrass (Poa annua), a non-native flowering plant. We also evaluated the possible effects of competition between P. annua and 2 vascular plants native to Antarctica, Antarctic pearlwort (Colobanthus quitensis) and Antarctic hairgrass (Deschampsia antarctica). We grew the native species in experimental plots with and without annual bluegrass under conditions that mimicked the Antarctic environment. After 5 months, we measured photosynthetic performance on the basis of chlorophyll fluorescence and determined total biomass of both native species. We found individual specimens of annual bluegrass at 3 different sites on the Antarctic Peninsula during the 2007-2008 and 2009-2010 austral summers. The presence of bluegrass was associated with a statistically significant reduction in biomass of pearlwort and hairgrass, whereas the decrease in biomass of bluegrass was not statistically significant. Similarly, the presence of bluegrass significantly reduced the photosynthetic performance of the 2 native species. Sites where bluegrass occurred were close to major maritime routes of scientific expeditions and of tourist cruises to Antarctica. We believe that if current levels of human activity and regional warming persist, more non-native plant species are likely to colonize the Antarctic and may affect native species.


Asunto(s)
Caryophyllaceae/crecimiento & desarrollo , Especies Introducidas , Poa/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , Regiones Antárticas , Caryophyllaceae/metabolismo , Cambio Climático , Actividades Humanas , Humanos , Poa/metabolismo , Poaceae/metabolismo , Estaciones del Año , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA