Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biointerphases ; 7(1-4): 38, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22700358

RESUMEN

Mutable collagenous tissues (MCTs) of echinoderms can be regarded as intelligent and dynamic biomaterials, due to their ability to reversibly change their mechanical properties in a short physiological time span. This mutability phenomenon is nervously mediated and involves secreted factors of the specialized 'juxtaligamental' cells, which, when released into the extracellular matrix (ECM), change the cohesive forces between collagen fibrils. MCTs exist in nature in several forms, including some associated with echinoderm autotomy mechanisms. Since the molecular mechanism of mutability is still incompletely understood, the aim of this work was to provide a detailed biochemical analysis of a typical mutable collagenous structure and to identify possible correlations between its biochemistry and mechanical states. A better understanding of the mutability phenomena is likely to provide a unique opportunity to develop new concepts that can be applied in the design of dynamic biomaterial for tissue regeneration, leading to new strategies in regenerative medicine. The MCT model used was the compass depressor ligament (CDL) of a sea urchin (Paracentrotus lividus), which was analyzed in different mechanical states, mimicking the mutability phenomenon. Spectroscopic techniques, namely Fourier transform infrared (FT-IR) and confocal Raman microscopy, were used to identify the specific molecular components that contribute to the CDL biochemical microenvironment and to investigate the possibility that remodelling/synthesis of new ECM components occurs during the mutability phenomenon by analogy with events during pregnancy in the uterine cervix of mammals (which also consists mainly of mechanically adaptable connective tissues). The results demonstrate that CDL ECM includes collagen with biochemical similarities to mammalian type I collagen, as well as sulphated glycosaminoglycans (GAGs). CDL mutability seems to involve a molecular rearrangement of the ECM, without synthesis of new ECM components. Although there were no significant biochemical differences between CDLs in the various mechanical states were observed. However, subtle adjustments in tissue hydration seemed to occur, particularly during stiffening.


Asunto(s)
Colágeno/metabolismo , Erizos de Mar/fisiología , Animales , Fenómenos Biomecánicos , Tejido Conectivo/metabolismo , Matriz Extracelular/metabolismo , Erizos de Mar/citología , Erizos de Mar/metabolismo
2.
J Exp Biol ; 213(Pt 12): 2104-15, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20511525

RESUMEN

The crinoid echinoderm Antedon mediterranea autotomises its arms at specialised skeletal joints known as syzygies that occur at regular intervals along the length of each arm. Detachment is achieved through the nervously mediated destabilisation of ligament fibres at a particular syzygy. The aim of this investigation was to identify neurotransmitters that are involved in the autotomy response. Physiological experiments were conducted on isolated preparations of syzygial joints, which can be induced to undergo autotomy-like fracture by applying stimulatory agents such as elevated [K(+)](o). Initial experiments with elevated [K(+)](o) showed that the autotomy threshold (the minimum amount of stimulation required to provoke autotomy) is lowest in syzygies at the arm base and rises distally. Of a range of neurotransmitter agonists tested, only l-glutamate invoked syzygial destabilisation, as did its analogues l-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainate, but not l-(+)-2-amino-4-phosphonobutyrate (l-AP4) or N-methyl-d-aspartate (NMDA). The implication that l-glutamate stimulates syzygial fracture through AMPA/kainate-like receptors was supported by the finding that the action of l-glutamate was inhibited by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Acetylcholine depressed the response of syzygial preparations to l-glutamate, suggesting a possible mechanism by which the autotomy threshold could be varied constitutively and facultatively. An immunocytochemical method employing a polyclonal antibody against l-glutamate conjugated to glutaraldehyde revealed l-glutamate-like immunoreactivity in all components of the putative neural pathway controlling the autotomy reflex, including the epidermis, brachial nerve, syzygial nerves and cellular elements close to the syzygial ligaments. We conclude that it is highly probable that l-glutamate acts as an excitatory neurotransmitter in the activation of arm autotomy in A. mediterranea.


Asunto(s)
Estructuras Animales/anatomía & histología , Equinodermos/citología , Equinodermos/fisiología , Glutamatos/metabolismo , Transmisión Sináptica/fisiología , Estructuras Animales/citología , Animales , Inmunohistoquímica , Oscilometría
3.
J Exp Biol ; 209(Pt 22): 4436-43, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17079714

RESUMEN

The marine sponge Chondrosia reniformis Nardo consists largely of a collagenous tissue, the mesohyl, which confers a cartilaginous consistency on the whole animal. This investigation was prompted by the incidental observation that, despite a paucity of potentially contractile elements in the mesohyl, intact C. reniformis stiffen noticeably when touched. By measuring the deflection under gravity of beam-shaped tissue samples, it was demonstrated that the flexural stiffness of the mesohyl is altered by treatments that influence cellular activities, including [Ca2+] manipulation, inorganic and organic calcium channel-blockers and cell membrane disrupters, and that it is also sensitive to extracts of C. reniformis tissue that have been repeatedly frozen then thawed. Since the membrane disrupters and tissue extracts cause marked stiffening of mesohyl samples, it is hypothesised that cells in the mesohyl store a stiffening factor and that the physiologically controlled release of this factor is responsible for the touch-induced stiffening of intact animals.


Asunto(s)
Poríferos/fisiología , Animales , Evolución Biológica , Fenómenos Biomecánicos , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Matriz Extracelular/fisiología , Poríferos/anatomía & histología , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA