RESUMEN
BACKGROUND: Corynebacterium pseudotuberculosis, a gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. METHODOLOGY AND FINDINGS: We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. CONCLUSIONS: These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.
Asunto(s)
Corynebacterium pseudotuberculosis/patogenicidad , Evolución Molecular , Genoma Bacteriano , Virulencia/genética , Corynebacterium pseudotuberculosis/genéticaRESUMEN
Crop yields are significantly reduced by aluminum toxicity on highly acidic soils, which comprise up to 50% of the world's arable land. Candidate aluminum tolerance proteins include organic acid efflux transporters, with the organic acids forming non-toxic complexes with rhizosphere aluminum. In this study, we used positional cloning to identify the gene encoding a member of the multidrug and toxic compound extrusion (MATE) family, an aluminum-activated citrate transporter, as responsible for the major sorghum (Sorghum bicolor) aluminum tolerance locus, Alt(SB). Polymorphisms in regulatory regions of Alt(SB) are likely to contribute to large allelic effects, acting to increase Alt(SB) expression in the root apex of tolerant genotypes. Furthermore, aluminum-inducible Alt(SB) expression is associated with induction of aluminum tolerance via enhanced root citrate exudation. These findings will allow us to identify superior Alt(SB) haplotypes that can be incorporated via molecular breeding and biotechnology into acid soil breeding programs, thus helping to increase crop yields in developing countries where acidic soils predominate.
Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Aluminio/toxicidad , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/genética , Sorghum/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Resistencia a Múltiples Medicamentos/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Membrana/biosíntesis , Proteínas de Transporte de Membrana/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sorghum/crecimiento & desarrolloRESUMEN
A truncated version of the cry1Ca gene from Bacillus thuringiensis was introduced into the genome of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) under the control of two promoters. A recombinant virus (vSyncry1c) was isolated and used to infect insect cells in culture and insect larvae. Structural and ultrastructural analysis of insects infected with vSyncry1C showed the formation of large cuboidal crystals inside the cytoplasm of insect cells in culture and in insect cadavers late in infection. Infected insect cell extracts were analyzed by SDS-PAGE and Western blot and showed the presence of a 65-kDa polypeptide probably corresponding to the protease processed form of the toxin. Bioassays using purified recombinant toxin crystals showed a CL(50) of 19.49 ng/ml for 2(nd) instar A. gemmatalis larvae and 114.1 ng/ml for S. frugiperda.
Asunto(s)
Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Endotoxinas/toxicidad , Lepidópteros , Nucleopoliedrovirus/genética , Control Biológico de Vectores , Spodoptera , Animales , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Endotoxinas/genética , Proteínas Hemolisinas , Larva/virología , Lepidópteros/ultraestructura , Lepidópteros/virología , Proteínas Recombinantes/toxicidad , Spodoptera/ultraestructura , Spodoptera/virologíaRESUMEN
Alumínio (Al) é um dos principais fatores que afetam o desenvolvimento de plantas em solos ácidos, reduzindo substancialmente a produtividade agrícola. Na América do Sul, cerca de 66 por cento da superfície do solo apresentam acidez, onde a alta saturaçäo de alumínio é uma das maiores limitações à prática agrícola. Apesar do crescente número de estudos, uma compreensäo completa das bases bioquímicas e moleculares da tolerância ao alumínio em plantas está longe de ser alcançada. No caso da cana-de-açúcar, näo há nada publicado sobre a regulaçäo gênica induzida durante o stress por alumínio. O objetivo deste trabalho foi identificar genes de cana-de-açúcar relacionados com as várias vias metabólicas reconhecidamente envolvidas na resposta à toxidez do alumínio em outras espécies de plantas e leveduras. Para a maioria dos genes relacionados com alumínio em outras espécies foram identificados similares em cana-de-açúcar, tais como aqueles que codificam enzimas que combatem o stress oxidativo ou a infestaçäo por patógenos, proteínas responsáveis pela exudaçäo de ácidos orgânicos e pela transduçäo de sinais. O papel desses genes na tolerância ao alumínio é revisado. Devido ao alto grau de conservaçäo do genoma entre espécies próximas de gramíneas como milho, cevada, sorgo e cana-de-açúcar, esses genes seräo uma ferramenta valiosa para a melhor compreensäo e manipulaçäo da tolerância ao alumínio nestas espécies.