Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771057

RESUMEN

(1) Background: Malignant gliomas are aggressive tumors characterized by fast cellular growth and highly invasive properties. Despite all biological and clinical advances in therapy, the standard treatment remains essentially palliative. Therefore, searching for alternative therapies that minimize adverse symptoms and improve glioblastoma patients' outcomes is imperative. Natural products represent an essential source in the discovery of such new drugs. Plants from the cerrado biome have been receiving increased attention due to the presence of secondary metabolites with significant therapeutic potential. (2) Aim: This study provides data on the cytotoxic potential of 13 leaf extracts obtained from plants of 5 families (Anacardiaceae, Annonaceae, Fabaceae, Melastomataceae e Siparunaceae) found in the Brazilian cerrado biome on a panel of 5 glioma cell lines and one normal astrocyte. (3) Methods: The effect of crude extracts on cell viability was evaluated by MTS assay. Mass spectrometry (ESI FT-ICR MS) was performed to identify the secondary metabolites classes presented in the crude extracts and partitions. (4) Results: Our results revealed the cytotoxic potential of Melastomataceae species Miconia cuspidata, Miconia albicans, and Miconia chamissois. Additionally, comparing the four partitions obtained from M. chamissois crude extract indicates that the chloroform partition had the greatest cytotoxic activity against the glioma cell lines. The partitions also showed a mean IC50 close to chemotherapy, temozolomide; nevertheless, lower toxicity against normal astrocytes. Analysis of secondary metabolites classes presented in these crude extracts and partitions indicates the presence of phenolic compounds. (5) Conclusions: These findings highlight M. chamissois chloroform partition as a promising component and may guide the search for the development of additional new anticancer therapies.


Asunto(s)
Antineoplásicos , Glioma , Melastomataceae , Humanos , Brasil , Cloroformo , Línea Celular , Antineoplásicos/farmacología , Extractos Vegetales/farmacología , Melastomataceae/química , Glioma/tratamiento farmacológico , Ecosistema
2.
Stem Cell Res Ther ; 12(1): 206, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762015

RESUMEN

Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15-18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Células Madre Neoplásicas
3.
Invest New Drugs ; 37(2): 223-237, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29931585

RESUMEN

Glioblastoma (GBM) is the most frequent and aggressive type of brain tumor. There are limited therapeutic options for GBM so that new and effective agents are urgently needed. Euphol is a tetracyclic triterpene alcohol, and it is the main constituent of the sap of the medicinal plant Euphorbia tirucalli. We previously identified anti-cancer activity in euphol based on the cytotoxicity screening of 73 human cancer cells. We now expand the toxicological screening of the inhibitory effect and bioactivity of euphol using two additional glioma primary cultures. Euphol exposure showed similar cytotoxicity against primary glioma cultures compared to commercial glioma cells. Euphol has concentration-dependent cytotoxic effects on cancer cell lines, with more than a five-fold difference in the IC50 values in some cell lines. Euphol treatment had a higher selective cytotoxicity index (0.64-3.36) than temozolomide (0.11-1.13) and reduced both proliferation and cell motility. However, no effect was found on cell cycle distribution, invasion and colony formation. Importantly, the expression of the autophagy-associated protein LC3-II and acidic vesicular organelle formation were markedly increased, with Bafilomycin A1 potentiating cytotoxicity. Finally, euphol also exhibited antitumoral and antiangiogenic activity in vivo, using the chicken chorioallantoic membrane assay, with synergistic temozolomide interactions in most cell lines. In conclusion, euphol exerted in vitro and in vivo cytotoxicity against glioma cells, through several cancer pathways, including the activation of autophagy-associated cell death. These findings provide experimental support for further development of euphol as a novel therapeutic agent for GBM, either alone or in combination chemotherapy.


Asunto(s)
Autofagia , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Euphorbia/química , Glioblastoma/patología , Lanosterol/análogos & derivados , Temozolomida/farmacología , Antineoplásicos Alquilantes/farmacología , Apoptosis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Movimiento Celular , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Humanos , Lanosterol/farmacología , Células Tumorales Cultivadas
4.
Neuropathology ; 38(5): 475-483, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30155928

RESUMEN

Medulloblastoma is the most frequent malignant brain tumor in children. Four medulloblastoma molecular subgroups, MBSHH , MBWNT , MBGRP3 and MBGRP4 , have been identified by integrated high-throughput platforms. Recently, a 22-gene panel NanoString-based assay was developed for medulloblastoma molecular subgrouping, but the robustness of this assay has not been widely evaluated. Mutations in the gene for human telomerase reverse transcriptase (hTERT) have been found in medulloblastomas and are associated with distinct molecular subtypes. This study aimed to implement the 22-gene panel in a Brazilian context, and to associate the molecular profile with patients' clinical-pathological features. Formalin-fixed, paraffin-embedded (FFPE) medulloblastoma samples (n = 104) from three Brazilian centers were evaluated. Expression profiling of the 22-gene panel was performed by NanoString and a Canadian series (n = 240) was applied for training phase. hTERT mutations were analyzed by PCR followed by direct Sanger sequencing and the molecular profile was associated with patients' clinicopathological features. Overall, 65% of the patients were male, average age at diagnosis was 18 years and 7% of the patients presented metastasis at diagnosis. The molecular classification was attained in 100% of the cases, with the following frequencies: MBSHH (n = 51), MBWNT (n = 19), MBGRP4 (n = 19) and MBGRP3 (n = 15). The MBSHH and MBGRP3 subgroups were associated with older and younger patients, respectively. The MBGRP4 subgroup exhibited the lowest 5-year cancer-specific overall survival (OS), yet in the multivariate analysis, only metastasis at diagnosis and surgical resection were associated with OS. hTERT mutations were detected in 29% of the cases and were associated with older patients, increased hTERT expression and MBSHH subgroup. The 22-gene panel provides a reproducible assay for molecular subgrouping of medulloblastoma FFPE samples in a routine setting and is well-suited for future clinical trials.


Asunto(s)
Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Perfilación de la Expresión Génica/métodos , Meduloblastoma/genética , Meduloblastoma/patología , Adolescente , Adulto , Neoplasias Cerebelosas/mortalidad , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Meduloblastoma/mortalidad , Persona de Mediana Edad , Pronóstico , Reproducibilidad de los Resultados , Transcriptoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA