Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Dent Res ; 90(9): 1085-90, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21628641

RESUMEN

Molecular interactions that direct trafficking of secreted proteins are not well-described in salivary glands. Here, we report that the soluble cargo protein Parotid Secretory Protein (PSP) is bound to the membranes of secretory granules isolated from rat parotids. This is apparently due to specific interaction with phosphatidylinositol phosphates (PtdInsP). PSP binds PtdIns(3,4)P(2), 10-fold greater than PtdIns(3,5)P(2) or PtdIns(4)P, and does not bind PtdIns(3)P or PtdIns(5)P. Human PSP synthesized in vitro also binds PtdIns(3,4)P(2). Bacterially expressed rat PSP binds PtdIns(3,4)P(2) with a K(d) of 2.4 x 10(-11) M. Other major secretory proteins (amylase, proline-rich protein) are not bound to isolated granule membranes and do not bind phosphatidylinositol phosphates. Immunofluorescence shows PtdIns(3,4)P(2) at the secretory granules, and fluorescent PtdIns(3,4)P(2) can flip from the outer leaflet to the inner leaflet of the membrane. Binding of PSP to PtdInsPs may contribute to sorting during the formation of the secretory granules, or sorting by retention during maturation of the granules.


Asunto(s)
Glándula Parótida/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Análisis de Varianza , Animales , Western Blotting , Humanos , Membranas Intracelulares/metabolismo , Masculino , Análisis por Matrices de Proteínas , Unión Proteica , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Vesículas Secretoras/metabolismo , Estadísticas no Paramétricas
2.
J Biol Inorg Chem ; 6(1): 91-9, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11191226

RESUMEN

In an effort to prepare Co(II)-substituted metallo-beta-lactamase L1 from Stenotrophomonas maltophilia for future spectroscopic and mechanistic studies, two methods for the preparation of Co(II)-L1 were tested. Method A involved adding CoCl2 directly to apo-L1 under anaerobic conditions. The resulting enzyme contained 1.9 moles of cobalt and exhibited very little activity, and UV-Vis, 1H NMR, and EPR studies indicated that most of the cobalt in this sample was Co(III). Method B involved reducing the single and unique disulfide bridge in L1 with tris(carboxyethyl)phosphine prior to adding CoCl2. The resulting enzyme was pink, contained 2.5 moles of cobalt per mole of enzyme, and exhibited kcat and Km values of 18+1 s(-1) and 10+/-1 microM, respectively, when using nitrocefin as the substrate. UV-Vis, 1H NMR, and EPR studies revealed that this enzyme sample contained high-spin Co(II). The UV-Vis spectra also provided evidence for Co(II) bound to one or both of the reduced cysteines. Efforts to block this non-specific Co(II) binding site using a chemical modification agent or site-directed mutagenesis were unsuccessful. The data presented here demonstrate the problem of solvent-exposed disulfides when preparing Co(II)-substituted enzymes and offers a convenient method to circumvent the problem.


Asunto(s)
Cobalto/química , Disulfuros/química , Stenotrophomonas/enzimología , beta-Lactamasas/química , Secuencia de Bases , Cartilla de ADN , Modelos Moleculares , Solventes/química , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA