Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1448656, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228839

RESUMEN

Developing an efficient and sustainable precision irrigation strategy is crucial in contemporary agriculture. This study aimed to combine proximal and remote sensing techniques to show the benefits of using both monitoring methods, simultaneously assessing the water status and response of 'Calatina' olive under two distinct irrigation levels: full irrigation (FI), and drought stress (DS, -3 to -4 MPa). Stem water potential (Ψstem) and stomatal conductance (gs) were monitored weekly as reference indicators of plant water status. Crop water stress index (CWSI) and stomatal conductance index (Ig) were calculated through ground-based infrared thermography. Fruit gauges were used to monitor continuously fruit growth and data were converted in fruit daily weight fluctuations (ΔW) and relative growth rate (RGR). Normalized difference vegetation index (NDVI), normalized difference RedEdge index (NDRE), green normalized difference vegetation index (GNDVI), chlorophyll vegetation index (CVI), modified soil-adjusted vegetation index (MSAVI), water index (WI), normalized difference greenness index (NDGI) and green index (GI) were calculated from data collected by UAV-mounted multispectral camera. Data obtained from proximal sensing were correlated with both Ψstem and gs, while remote sensing data were correlated only with Ψstem. Regression analysis showed that both CWSI and Ig proved to be reliable indicators of Ψstem and gs. Of the two fruit growth parameters, ΔW exhibited a stronger relationship, primarily with Ψstem. Finally, NDVI, GNDVI, WI and NDRE emerged as the vegetation indices that correlated most strongly with Ψstem, achieving high R2 values. Combining proximal and remote sensing indices suggested two valid approaches: a more simplified one involving the use of CWSI and either NDVI or WI, and a more comprehensive one involving CWSI and ΔW as proximal indices, along with WI as a multispectral index. Further studies on combining proximal and remote sensing data will be necessary in order to find strategic combinations of sensors and establish intervention thresholds.

2.
Front Plant Sci ; 15: 1416548, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100086

RESUMEN

This study evaluated growth, yield and olive oil quality of mature pedestrian olive orchards. Trees of three Sicilian cultivars Calatina, Nocellara del Belice and Abunara were planted at four combinations of planting densities and training forms. Trees at 2 × 5 m were trained to central leader (CLx2), those at 3 × 5 m to free palmette (FPx3), those at 4 x 5 to globe vase (GVx4), and those at 5 x 5 to poly-conic vase (PVx5). 'Calatina' had the smallest trees in terms of trunk size in all growing systems, while canopy size of trees at higher densities was similar for all three cultivars. 'Calatina' was also the most growth efficient (m3 of canopy per cm2 of TCSA) and produced the least amount of pruning wood in the hedgerow systems (CLx2 and FPx3). Fruit yield per tree tended to be higher in more vigorous cultivars (Abunara and Nocellara) grown to 3D systems (GVx4 and PVx5), while 'Calatina' was the most yield efficient (kg of fruit per cm2 of TCSA) especially in the hedgerow growing systems. Fruit and oil yield per ha and average production value tended to be highest in CLx2 trees and lowest in GVx4 trees, with 'Calatina' showing the sharpest changes and 'Nocellara' the smallest changes among growing systems. According to the Jaen index, CLx2 tended to induce earlier fruit maturation, followed by PVx5, GVx4, and FPx3. The growing system did not affect oil fatty acid composition, while 'Calatina' had the highest amount of mono-unsaturated fatty acids and the lowest amount of saturated fatty acids. 'Abunara' oils exhibited the highest amount of total phenols in CLx2, while 'Calatina' and 'Nocellara' oils exhibited the highest amount in FPx3 and PVx5. Both, trans-2-hexenal ("cut grass" sensory note) and hexenyl acetate ("floral" sensory note) tended to be lowest in oils from trees grown at CLx2 and highest in those from trees grown at GVx4, showing a somewhat inverse relationship with fruit ripening degree. The outcome of the present study on mature pedestrian orchards shows that proper combinations of cultivars, planting densities, and training forms (canopy shape) may result in efficient intensive systems for growing olive in areas where super-high density systems cannot be profitable due to agronomic and environmental limitations (water shortage, steep sloping sites, small farm size, etc.). Pedestrian growing systems can also be used to exploit olive biodiversity by allowing the use of available local genotypes. For this reason, they may represent an effective and sustainable solution against unexpected climate changes and associated emerging diseases.

3.
Front Plant Sci ; 14: 1294195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179483

RESUMEN

Determining the influence of vapor pressure deficit (VPD) on fruit growth is a key issue under a changing climate scenario. Using a comparative approach across different fruit tree species may provide solid indications of common or contrasting plant responses to environmental factors. Knowing fruit growth responses to VPD may also be useful to optimize horticultural management practices under specific atmospheric conditions. Climate data to calculate VPD and fruit relative growth rates (RGR) by fruit gauges were monitored in peach at cell division, pit hardening and cell expansion stages; in two mango cultivars at cell division, cell expansion and maturation stages; in two olive cultivars, either full irrigated or rainfed, at early and late cell expansion stages; in 'Valencia' orange at early and late cell division stage, before and after mature fruit harvest; in loquat at cell expansion and maturation stages. At the fruit cell division stage, sensitivity of fruit growth to VPD seems to vary with species, time, and probably soil and atmospheric water deficit. 'Keitt' mango and 'Valencia' orange fruit growth responded to VPD in opposite ways, and this could be due to very different time of the year and VPD levels in the monitoring periods of the two species. At pit hardening stage of peach fruit growth, a relatively weak relationship was observed between VPD and RGR, and this is not surprising as fruit growth in size at this stage slows down significantly. A consistent and marked negative relationship between VPD and RGR was observed at cell expansion stage, when fruit growth is directly depending on water intake driving cell turgor. Another behavior common to all observed species was the gradual loss of relationship between VPD and RGR at the onset of fruit maturation, when fruit growth in size is generally programmed to stop. Finally, regardless of fruit type, VPD may have a significant effect on fruit growth and could be a useful parameter to be monitored for tree water management mainly when the cell expansion process prevails during fruit growth.

4.
Plants (Basel) ; 10(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34210010

RESUMEN

Studying mango (Mangifera indica L.) fruit development represents one of the most important aspects for the precise orchard management under non-native environmental conditions. In this work, precision fruit gauges were used to investigate important eco-physiological aspects of fruit growth in two mango cultivars, Keitt (late ripening) and Tommy Atkins (early-mid ripening). Fruit absolute growth rate (AGR, mm day-1), daily diameter fluctuation (ΔD, mm), and a development index given by their ratio (AGR/ΔD) were monitored to identify the prevalent mechanism (cell division, cell expansion, ripening) involved in fruit development in three ('Tommy Atkins') or four ('Keitt') different periods during growth. In 'Keitt', cell division prevailed over cell expansion from 58 to 64 days after full bloom (DAFB), while the opposite occurred from 74 to 85 DAFB. Starting at 100 DAFB, internal changes prevailed over fruit growth, indicating the beginning of the ripening stage. In Tommy Atkins (an early ripening cultivar), no significant differences in AGR/ΔD was found among monitoring periods, indicating that both cell division and expansion coexisted at gradually decreasing rates until fruit harvest. To evaluate the effect of microclimate on fruit growth the relationship between vapor pressure deficit (VPD) and ΔD was also studied. In 'Keitt', VPD was the main driving force determining fruit diameter fluctuations. In 'Tommy Atkins', the lack of relationship between VPD and ΔD suggest a hydric isolation of the fruit due to the disruption of xylem and stomatal flows starting at 65 DAFB. Further studies are needed to confirm this hypothesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA