RESUMEN
The recruitment of the lysosomal cathepsins B (CAB), L (CAL) and D (CAD) as luminal digestive enzymes was investigated in 3 species of beetles. Gene expression was determined by RNA-seq in different regions of the midgut and in the carcasses from the transcriptomes of Dermestes maculatus, Tenebrio molitor and Zabrotes subfasciatus. These data together with phylogenetic analyses, allowed us to identify the sequences of the gene coding for digestive and lysosomal CABs, CADs and CALs in T. molitor and Z. subfasciatus and observe the absence of digestive cathepsins in D. maculatus. Comparisons of structures based on the overall similarity of modelled structures were performed and subsite residues in the lysosomal and digestive CALs were identified by molecular docking. The data showed that S2 subsites are very variable, probably as an adaption to a luminal digestive role. The survey of sequences of the gene coding for cathepsins in the genomes of 13 beetle species from different phylogenetic groups showed that expansion of CAL and CAB genes occurred only in the Cucujiformia clade. Several digestive CABs have a reduced occluding loop, probably to act as digestive enzymes. Pollen-feeding was proposed to be the selective pressure to recruit cathepsins as digestive enzymes in Cucujiformia beetles.
Asunto(s)
Escarabajos , Animales , Catepsina L/genética , Catepsina L/metabolismo , Catepsinas/química , Catepsinas/genética , Catepsinas/metabolismo , Escarabajos/metabolismo , Lisosomas/metabolismo , Simulación del Acoplamiento Molecular , FilogeniaRESUMEN
Most dietary lipids are triacylglycerols (TAGs) and phosphatides that are digested by TAG lipases and phospholipases (PLIPs), respectively, originating fatty acids (FA). The genome of Musca domestica has genes coding for phospholipases A1 (1PLIP), A2 (2PLIP), B (BPLIP), and acid lipases (ALIP), as for proteins involved in activation, binding, and metabolism of FA, which expression in the larval midgut was evaluated by RNA-seq. Some of the codified proteins were identified in midgut microvillar-enriched membrane by proteomics. 1PLIPs are the most expressed PLIPs, mainly in anterior midgut whereas 2PLIPs, and BPLIP in middle and posterior midgut, and ALIPs between middle and posterior regions. Absorption of FAs is putatively accomplished by proteins involved in FA activation (acyl-CoA synthetases) found in microvillar-enriched membrane preparations. Furthermore, FA uptake could be enhanced by proteins that bind FAs (FA-binding proteins) and its activated form (acyl-CoA binding proteins) mainly expressed in posterior midgut. Activated FAs could have different fates: synthesis of diacylglycerol (DAG) and TAG through monoacylglycerol and glycerol-3-phosphate pathways; synthesis of phosphatides; energy source by ß-oxidation. Most genes coding for enzymes of those routes is expressed mainly at the end of posterior midgut. Data suggest that phosphatides are digested in anterior midgut by Md1PLIPs, releasing lysophosphatides that emulsify fats to be digested by MdALIPs in the middle and posterior midgut. Most resulting FAs is absorbed in the posterior midgut, where they follow the synthesis of DAG, TAG, and phosphatides or are oxidized along the midgut, mainly in highly metabolic middle and posterior midgut regions.
Asunto(s)
Ácidos Grasos/metabolismo , Tracto Gastrointestinal/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Fosfolípidos/metabolismo , Proteoma/análisis , Transcriptoma , Triglicéridos/metabolismo , Animales , Digestión , Moscas Domésticas , Larva/crecimiento & desarrollo , Larva/metabolismo , RNA-SeqRESUMEN
Most insects have a peritrophic membrane (matrix) (PM) surrounding the food bolus. This structure, similarly to the cuticle, is mainly composed of chitin and proteins. The main proteins forming PM are known as peritrophins (PMP), whereas some of the cuticle proteins are the cuticle proteins analogous to peritrophins (CPAP). Both proteins are composed of one or more chitin binding peritrophin-A domain (CBD) and no other recognized domain. Furthermore, insects containing PM usually have two chitin synthase (CS) genes, one mainly expressed in carcass and the other in midgut. In this work we identified PMP, CPAP and CS genes in the genome of insects from the Polyneoptera, Paraneoptera and Holometabola cohorts and analyzed their expression profile in different species from each group. In agreement with the absence of PM, we observed less CBD-containing proteins and only one CS gene in the genome of Paraneoptera species, except for the Phthiraptera Pediculus humanus. The lack of PM in Paraneoptera species was also confirmed by the micrographs of the midgut of two Hemiptera species, Dysdercus peruvianus and Mahanarva fimbriolata which agreed with the RNA-seq data of both species. Our analyses also highlighted a higher number of CBD-containing proteins in Holometabola in relation to the earlier divergent Polyneoptera group, especially regarding the genes composed of more than three CBDs, which are usually associated to PM formation. Finally, we observed a high number of CBD-containing proteins being expressed in both midgut and carcass tissues of several species, which we named as ubiquitous-CBD-containing proteins (UCBP), as their function is unclear. We hypothesized that these proteins can be involved in both cuticle and PM formation or that they can be involved in immune response and/or tracheolae formation.
Asunto(s)
Quitina Sintasa/genética , Genoma de los Insectos , Proteínas de Insectos/genética , Insectos/genética , Animales , Tracto Gastrointestinal/metabolismo , Proteínas de Insectos/metabolismo , Insectos/metabolismoRESUMEN
Despite the great morphological diversity of insects, there is a regularity in their digestive functions, which is apparently related to their physiology. In the present work we report the de novo midgut transcriptomes of four non-model insects from four distinct orders: Spodoptera frugiperda (Lepidoptera), Musca domestica (Diptera), Tenebrio molitor (Coleoptera) and Dysdercus peruvianus (Hemiptera). We employed a computational strategy to merge assemblies obtained with two different algorithms, which substantially increased the quality of the final transcriptomes. Unigenes were annotated and analyzed using the eggNOG database, which allowed us to assign some level of functional and evolutionary information to 79.7% to 93.1% of the transcriptomes. We found interesting transcriptional patterns, such as: i) the intense use of lysozymes in digestive functions of M. domestica larvae, which are streamlined and adapted to feed on bacteria; ii) the up-regulation of orthologous UDP-glycosyl transferase and cytochrome P450 genes in the whole midguts different species, supporting the existence of an ancient defense frontline to counter xenobiotics; iii) evidence supporting roles for juvenile hormone binding proteins in the midgut physiology, probably as a way to activate genes that help fight anti-nutritional substances (e.g. protease inhibitors). The results presented here shed light on the digestive and structural properties of the digestive systems of these distantly related species. Furthermore, the produced datasets will also be useful for scientists studying these insects.
Asunto(s)
Perfilación de la Expresión Génica , Insectos/clasificación , Insectos/genética , Animales , Tracto Gastrointestinal , Expresión GénicaRESUMEN
Physiological data showed that T. molitor midgut is buffered at pH 5.6 at the two anterior thirds and at 7.9 at the posterior third. Furthermore, water is absorbed and secreted at the anterior and posterior midgut, respectively, driving a midgut counter flux of fluid. To look for the molecular mechanisms underlying these phenomena and nutrient absorption as well, a transcriptomic approach was used. For this, 11 types of transporters were chosen from the midgut transcriptome obtained by pyrosequencing (Roche 454). After annotation with the aid of databanks and manual curation, the sequences were validated by RT-PCR. The expression level of each gene at anterior, middle and posterior midgut and carcass (larva less midgut) was evaluated by RNA-seq taking into account reference sequences based on 454 contigs and reads obtained by Illumina sequencing. The data showed that sugar and amino acid uniporters and symporters are expressed along the whole midgut. In the anterior midgut are found transporters for NH3 and NH4+ that with a chloride channel may be responsible for acidifying the lumen. At the posterior midgut, bicarbonate-Cl- antiporter with bicarbonate supplied by carbonic anhydrase may alkalinize the lumen. Water absorption caused mainly by an anterior Na+-K+-2Cl- symporter and water secretion caused by a posterior K+-Cl- may drive the midgut counter flux. Transporters that complement the action of those described were also found.
Asunto(s)
Tenebrio/metabolismo , Aminoácidos/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Transporte Biológico , Tracto Gastrointestinal/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Larva/metabolismo , Monosacáridos/metabolismo , Tenebrio/crecimiento & desarrollo , Agua/metabolismoRESUMEN
α-Mannosidases are enzymes which remove non-reducing terminal residues from glycoconjugates. Data on both GH47 and GH38 (Golgi and lysosomal) enzymes are available. Data on insect midgut α-mannosidases acting in digestion are preliminary and do not include enzyme sequences. Tenebrio molitor midgut α-mannosidases were separated by chromatography into two activity peaks: a major (Man1) and a minor (Man2). An antibody generated against a synthetic peptide corresponding to a sequence of α-mannosidase fragment recognizes Man2 but not Man1. That fragment was later found to correspond to TmMan2 (GenBank access KP892646), showing that the cDNA coding for Man2 is actually TmMan2. TmMan2 codes for a mature α-mannosidase with 107.5 kDa. Purified Man2 originates after SDS-PAGE one band of about 72 kDa and another of 51 kDa, which sums 123 kDa, in agreement with gel filtration (123 kDa) data. These results suggest that Man2 is processed into peptides that remain noncovalently linked within the functional enzyme. The physical and kinetical properties of purified Man1 and Man2 are similar. They have a molecular mass of 123 kDa (gel filtration), pH optimum (5.6) and response to inhibitors like swainsonine (Man1 Ki, 68 nM; Man2 Ki, 63 nM) and deoxymannojirimycin (Man1 Ki, 0.12 mM; Man2 Ki, 0.15 mM). Their substrate specificities are a little different as Man2 hydrolyzes α-1,3 and α-1,6 bonds better than α-1,2, whereas the contrary is true for Man1. Thus, they pertain to Class II (GH38 α-mannosidases), that are catabolic α-mannosidases similar to lysosomal α-mannosidase. However, Man2, in contrast to true lysosomal α-mannosidase, is secreted (immunocytolocalization data) into the midgut contents. There, Man2 may participate in digestion of fungal cell walls, known to have α-mannosides in their outermost layer. The amount of family 38 α-mannosidase sequences found in the transcriptome (454 pyrosequencing) of the midgut of 9 insects pertaining to 5 orders is perhaps related to the diet of these organisms, as suggested by a large number of lysosomal α-mannosidase in the T. molitor midgut.
Asunto(s)
Proteínas de Insectos/química , Tenebrio/enzimología , alfa-Manosidasa/química , Animales , Femenino , Tracto Gastrointestinal/enzimología , Proteínas de Insectos/aislamiento & purificación , Cinética , Larva/enzimología , Masculino , Mananos/metabolismo , Especificidad por Sustrato , Tenebrio/genética , alfa-Manosidasa/aislamiento & purificaciónRESUMEN
Cockroaches are among the first insects to appear in the fossil record. This work is part of ongoing research on insects at critical points in the evolutionary tree to disclose evolutionary trends in the digestive characteristics of insects. A transcriptome (454 Roche platform) of the midgut of Periplanetaamericana was searched for sequences of digestive enzymes. The selected sequences were manually curated. The complete or nearly complete sequences showing all characteristic motifs and highly expressed (reads counting) had their predicted sequences checked by cloning and Sanger sequencing. There are two chitinases (lacking mucin and chitin-binding domains), one amylase, two α- and three ß-glucosidases, one ß-galactosidase, two aminopeptidases (none of the N-group), one chymotrypsin, 5 trypsins, and none ß-glucanase. Electrophoretic and enzymological data agreed with transcriptome data in showing that there is a single ß-galactosidase, two α-glucosidases, one preferring as substrate maltase and the other aryl α-glucoside, and two ß-glucosidases. Chromatographic and enzymological data identified 4 trypsins, one chymotrypsin (also found in the transcriptome), and one non-identified proteinase. The major digestive trypsin is identifiable to a major P. americana allergen (Per a 10). The lack of ß-glucanase expression in midguts was confirmed, thus lending support to claims that those enzymes are salivary. A salivary amylase was molecularly cloned and shown to be different from the one from the midgut. Enzyme distribution showed that most digestion occurs under the action of salivary and midgut enzymes in the foregut and anterior midgut, except the posterior terminal digestion of proteins. A counter-flux of fluid may be functional in the midgut of the cockroach to explain the low excretory rate of digestive enzymes. Ultrastructural and immunocytochemical localization data showed that amylase and trypsin are released by both merocrine and apocrine secretion mainly from gastric caeca. Finally, a discussion on Polyneoptera digestive physiology is provided.
Asunto(s)
Digestión/fisiología , Periplaneta/fisiología , Aminopeptidasas/genética , Aminopeptidasas/fisiología , Animales , Secuencia de Bases , Quitinasas/genética , Quitinasas/fisiología , Quimotripsina/genética , Quimotripsina/fisiología , Tracto Gastrointestinal/anatomía & histología , Tracto Gastrointestinal/diagnóstico por imagen , Glucosidasas/genética , Glucosidasas/fisiología , Microscopía Electrónica , Datos de Secuencia Molecular , Péptido Hidrolasas/genética , Péptido Hidrolasas/fisiología , Periplaneta/anatomía & histología , Periplaneta/enzimología , Periplaneta/genética , Reacción en Cadena de la Polimerasa , Transcriptoma/genética , Tripsina/genética , Tripsina/fisiología , Ultrasonografía , beta-Galactosidasa/genética , beta-Galactosidasa/fisiología , beta-Glucosidasa/genética , beta-Glucosidasa/fisiologíaRESUMEN
The soluble midgut trehalase from Tenebrio molitor (TmTre1) was purified after several chromatographic steps, resulting in an enzyme with 58 kDa and pH optimum 5.3 (ionizing active groups in the free enzyme: pK(e1) = 3.8 ± 0.2 pK(e2) = 7.4 ± 0.2). The purified enzyme corresponds to the deduced amino acid sequence of a cloned cDNA (TmTre1-cDNA), because a single cDNA coding a soluble trehalase was found in the T. molitor midgut transcriptome. Furthermore, the mass of the protein predicted to be coded by TmTre1-cDNA agrees with that of the purified enzyme. TmTre1 has the essential catalytic groups Asp 315 and Glu 513 and the essential Arg residues R164, R217, R282. Carbodiimide inactivation of the purified enzyme at different pH values reveals an essential carboxyl group with pKa = 3.5 ± 0.3. Phenylglyoxal modified a single Arg residue with pKa = 7.5 ± 0.2, as observed in the soluble trehalase from Spodoptera frugiperda (SfTre1). Diethylpyrocarbonate modified a His residue that resulted in a less active enzyme with pK(e1) changed to 4.8 ± 0.2. In TmTre1 the modified His residue (putatively His 336) is more exposed than the His modified in SfTre1 (putatively His 210) and that affects the ionization of an Arg residue. The architecture of the active site of TmTre1 and SfTre1 is different, as shown by multiple inhibition analysis, the meaning of which demands further research. Trehalase sequences obtained from midgut transcriptomes (pyrosequencing and Illumina data) from 8 insects pertaining to 5 different orders were used in a cladogram, together with other representative sequences. The data suggest that the trehalase gene went duplication and divergence prior to the separation of the paraneopteran and holometabolan orders and that the soluble trehalase derived from the membrane-bound one by losing the C-terminal transmembrane loop.
Asunto(s)
Tenebrio/enzimología , Trehalasa/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Dominio Catalítico , Clonación Molecular , Evolución Molecular , Tracto Gastrointestinal/enzimología , Glucósidos/metabolismo , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/aislamiento & purificación , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Spodoptera/enzimología , Trehalasa/antagonistas & inhibidores , Trehalasa/aislamiento & purificaciónRESUMEN
Microapocrine vesicles bud from the lepidopteran midgut microvilli as double membrane vesicles. To identify the proteins secreted by this process, antibodies raised against isolated microapocrine vesicles from Spodoptera frugiperda were used for screening a midgut cDNA expression library. Positive clones were sequenced, assembled and N blasted against S. frugiperda sequences obtained by pyrosequencing midgut mRNA. This procedure led to the extension of microapocrine sequences that were annotated. A similar procedure was used to identify midgut microvillar proteins that necessarily are part of the microapocrine vesicle. Forty-eight proteins were associated with microvillar membranes. They pertain to 8 functional groups: digestive enzymes, peritrophic membrane, protection, transporters, receptors, secretory machinery, cytoskeleton and signaling, and unknown. Twenty-eight proteins are putatively secreted by microapocrine secretion. Most of them are digestive enzymes, but the list also includes proteins involved in protection and in peritrophic membrane formation. Among the identified digestive enzymes, aminopeptidases are typically microvillar and group into the classes 1, 2, 3, 5, and 6. There are two amylases secreted by microapocrine secretion: one is a digestive enzyme and the other is a transporter-like amylase with no clear function. One lipase has a predicted transmembrane loop, whereas the others are supposed to be secreted by microapocrine secretion and be digestive. Trypsin is membrane bound and is delivered by microapocrine secretion, but has no predicted features to bind membranes. It may remain bound through the signal peptide till be delivered into the midgut lumen. Proteins supposed to be involved in the microapocrine secretory machinery were: calmodulin, annexin, myosin 7a, and gelsolin 1. Their putative roles are discussed, but more research is necessary to settle this subject.