Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 107(7): 1513-1521, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30821051

RESUMEN

Halloysite nanotubes (HLNTs) were used as nanocarriers of the tuberculostatic agent isoniazid (INH), a BCS (Biopharmaceutics Classification System) class III drug. Self-assembling nanohybrids (INH-loaded HLNTs) with an average outer diameter of 90 nm and polydispersity index of 0.7 approximately, were obtained by spontaneous adsorption of INH molecules to HLNTs powder in aqueous medium. The nanohybrids were aimed to improve oral drug bioavailability and reduce physicochemical incompatibility of INH with other concomitantly administered tuberculostatic agents. In vitro drug release from INH-loaded HLNTs was successfully fitted to a diffusive kinetic law founded on the adsorption-desorption equilibrium between drug molecules in solution and solid inorganic excipients. INH-loaded HLNTs showed good in vitro biocompatibility toward Caco-2 cells at the concentrations studied (up to 1233 µg/mL), with improved cell proliferation. Permeability tests showed that INH transport across Caco-2 cellular membranes was greatly enhanced and fluorescent microscopy confirmed that the drug encapsulated into nanohybrid was effectively internalized by the cells. INH-loaded HLNTs enhanced stability of the drug in presence of other tuberculostatic agents, both in binary and quaternary combinations. It has been demonstrated that simple interaction between INH with HLNTs leads to drug permeability and stability improvements that could greatly facilitate the design of multiple drug dosage forms, an actual challenge in oral treatment of tuberculosis. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.


Asunto(s)
Arcilla/química , Nanotubos/química , Tuberculosis/tratamiento farmacológico , Células CACO-2 , Muerte Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Humanos , Isoniazida/farmacología , Isoniazida/uso terapéutico , Cinética , Análisis Espectral
2.
Eur J Pharm Biopharm ; 132: 180-191, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30267834

RESUMEN

Praziquantel is an antiparasitic drug used for decades. Currently, the praziquantel commercial preparation is a racemic mixture, in which only the levo-enantiomer possesses anthelmintic activity. The knowledge of its properties in the solid state and other chemical-physical properties is necessary for improving its efficacy and applications. Drug solid dispersions were prepared with calcium carbonate at 1:5 drug to excipient weight ratio by solvent evaporation method. Then, the modification of the crystal structure of the racemic polymorph of praziquantel in presence of calcium carbonate has been studied by means of several analytical techniques (DSC, TGA, XRD, SEM, FTIR, Raman spectroscopy and chiral liquid chromatography). This study has been completed with atomistic calculations based on empirical interatomic force fields and quantum mechanics methods applied to the crystal structure of praziquantel and of intermolecular interactions. The results evidenced that calcium carbonate provoked a conformational change in the praziquantel molecule yielding the formation of different polymorphs of praziquantel crystal. These alterations were not observed replacing calcium carbonate with colloidal silica as excipient in the solid dispersion.


Asunto(s)
Antihelmínticos/administración & dosificación , Carbonato de Calcio/química , Excipientes/química , Praziquantel/administración & dosificación , Antihelmínticos/química , Química Farmacéutica/métodos , Cristalización , Praziquantel/química , Solventes/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA