Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Phys ; 51(6): 4447-4457, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38709978

RESUMEN

BACKGROUND: The use of Computed Tomography (CT) imaging data to create 3D printable patient-specific devices for radiation oncology purposes is already well established in the literature and has shown to have superior conformity than conventional methods. Using non-ionizing radiation imaging techniques such as photogrammetry or laser scanners in-lieu of a CT scanner presents many desirable benefits including reduced imaging dose and fabrication of the device can be completed prior to simulation. With recent advancements in smartphone-based technology, photographic and LiDAR-based technologies are more readily available than ever before and to a high level of quality. As a result, these non-ionizing radiation imaging methods are now able to generate patient-specific devices that can be acceptable for clinical use. PURPOSE: In this work, we aim to determine if smartphones can be used by radiation oncologists or other radiation oncology staff to generate bolus or brachytherapy surface moulds instead of conventional CT with equivalent or comparable accuracy. METHODS: This work involved two separate studies: a phantom and participant study. For the phantom study, a RANDO anthropomorphic phantom (limited to the nose region) was used to generate 3D models based on three different imaging techniques: conventional CT, photogrammetry & LiDAR which were both acquired on a smartphone. Virtual boli were designed in Blender and 3D printed from PLA plastic material. The conformity of each printed boli was assessed by measuring the air gap volume and approximate thickness between the phantom & bolus acquired together on a CT. For the participant study, photographs, and a LiDAR scan of four volunteers were captured using an iPhone 13 Pro™ to assess their feasibility for generating human models. Each virtual 3D model was visually assessed to identify any issues in their reconstruction. The LiDAR models were registered to the photogrammetry models where a distance to agreement analysis was performed to assess their level of similarity. Additionally, a 3D virtual bolus was designed and printed using ABS material from all models to assess their conformity onto the participants skin surface using a verbal feedback method. RESULTS: The photogrammetry derived bolus showed comparable conformity to the CT derived bolus while the LiDAR derived bolus showed poorer conformity as shown by their respective air gap volume and thickness measurements. The reconstruction quality of both the photogrammetry and LiDAR models of the volunteers was inadequate in regions of facial hair and occlusion, which may lead to clinically unacceptable patient-specific device that are created from these areas. All participants found the photogrammetry 3D printed bolus to conform to their nose region with minimal room to move while three of the four participants found the LiDAR was acceptable and could be positioned comfortably over their entire nose. CONCLUSIONS: Smartphone-based photogrammetry and LiDAR software show great potential for future use in generating 3D reference models for radiation oncology purposes. Further investigations into whether they can be used to fabricate clinically acceptable patient-specific devices on a larger and more diverse cohort of participants and anatomical locations is required for a thorough validation of their clinical usefulness.


Asunto(s)
Oncología por Radiación , Teléfono Inteligente , Oncología por Radiación/instrumentación , Humanos , Fantasmas de Imagen , Impresión Tridimensional , Braquiterapia/instrumentación , Tomografía Computarizada por Rayos X/instrumentación
2.
Phys Eng Sci Med ; 45(1): 125-134, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35020174

RESUMEN

In this study, we investigate whether an acceptable dosimetric plan can be obtained for a brachytherapy surface applicator designed using photogrammetry and compare the plan quality to a CT-derived applicator. The nose region of a RANDO anthropomorphic phantom was selected as the treatment site due to its high curvature. Photographs were captured using a Nikon D5600 DSLR camera and reconstructed using Agisoft Metashape while CT data was obtained using a Canon Aquillion scanner. Virtual surface applicators were designed in Blender and printed with PLA plastic. Treatment plans with a prescription dose of 3.85 Gy × 10 fractions with 100% dose to PTV on the bridge of the nose at 2 mm depth were generated separately using AcurosBV in the Varian BrachyVision TPS. PTV D98%, D90% and V100%, and OAR D0.1cc, D2cc and V50% dose metrics and dwell times were evaluated, with the applicator fit assessed by air-gap volume measurements. Both types of surface applicators were printed with minimal defects and visually fitted well to the target area. The measured air-gap volume between the photogrammetry applicator and phantom surface was 44% larger than the CT-designed applicator, with a mean air gap thickness of 3.24 and 2.88 mm, respectively. The largest difference in the dose metric observed for the PTV and OAR was the PTV V100% of - 1.27% and skin D0.1cc of - 0.28%. PTV D98% and D90% and OAR D2cc and V50% for the photogrammetry based plan were all within 0.5% of the CT based plan. Total dwell times were also within 5%. A 3D printed surface applicator for the nose was successfully constructed using photogrammetry techniques. Although it produced a larger air gap between the surface applicator and phantom surface, a clinically acceptable dose plan was created with similar PTV and OAR dose metrics to the CT-designed applicator. Additional future work is required to comprehensively evaluate its suitability in a clinically environment.


Asunto(s)
Braquiterapia , Braquiterapia/métodos , Fotogrametría , Impresión Tridimensional , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos
3.
Phys Med ; 65: 15-20, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31430581

RESUMEN

An investigation into the response of optical fibres to 16.5 MeV protons is presented here. A silica and a poly(methyl methacrylate) (PMMA) optical fibre was exposed to 16.5 MeV protons from a GE PETtrace cyclotron. The optical fibres were exposed to beam currents of 30nA - 270nA and the emission spectrum analysed. The silica fibre was the most sensitive and had two main peaks at 460 nm and 650 nm. The ratio between the peaks was observed to increase as irradiation of the fibres continued, where the 460 nm peak increased at a rate >4 times the 650 nm peak. The rate of increase of the ratio between the peaks was observed to be constant at a constant target current and linear with target current. In the case of the PMMA fibre, significant spectral changes were observed during the exposure to 16.5 MeV protons. A simple method for estimating the effect of photodarkening and activation is presented here and indicated that the changes in the spectrum for the PMMA fibres may be due to photodarkening and activation.


Asunto(s)
Fibras Ópticas , Polimetil Metacrilato , Protones , Dióxido de Silicio , Análisis Espectral
4.
Brachytherapy ; 18(5): 689-700, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31230942

RESUMEN

PURPOSE: We propose a novel method of designing surface mold brachytherapy applicators using optical photogrammetry. The accuracy of this technique for the purpose of 3D-printing surface mold brachytherapy applicators is investigated. METHODS AND MATERIALS: Photogrammetry was used to generate a 3D model of a patient's right arm. The geometric accuracy of the model was evaluated against CT in terms of volume, surface area, and the Hausdorff distance. A surface mold applicator was then 3D printed using this reconstructed model. The accuracy was evaluated by analyzing the displacement and air-gap volumes between the applicator and plaster cast on a CT image. This technique was subsequently applied to generate a 3D-printed applicator of the author's hand directly, as a proof of principle, using only photographic images. RESULTS: The volume and surface area of the model were within 0.1% and 2.6% of the CT-obtained values, respectively. Using the Hausdorff distance metric, it was determined that 93% of the visible vertices present in the CT-derived model had a matching vertex on the photogrammetry-derived model within 1 mm, indicating a high level of similarity. The maximum displacement between the plaster cast of the patient's arm and the photo-derived 3D-printed applicator was 1.2 mm with a total air-gap volume of approximately 0.05 cm3. CONCLUSIONS: Photogrammetry has been applied to the task of generating 3D-printed brachytherapy surface mold applicators. The current work demonstrates the feasibility and accuracy of this technique and how it may be incorporated into a 3D-printing brachytherapy workflow.


Asunto(s)
Braquiterapia/instrumentación , Braquiterapia/métodos , Fotogrametría/métodos , Impresión Tridimensional , Brazo/anatomía & histología , Brazo/diagnóstico por imagen , Moldes Quirúrgicos , Diseño Asistido por Computadora , Diseño de Equipo , Estudios de Factibilidad , Humanos , Imagenología Tridimensional/métodos , Modelos Anatómicos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA