Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20144, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39209939

RESUMEN

Our understanding of the spread of yeasts in natural ecosystems remains somewhat limited. The recent momentum of yeast ecology research has unveiled novel habitats and vectors that, alongside human activities, impact yeast communities in their natural environments. Yeasts, as non-airborne microorganisms, rely on animal vectors, predominantly insects. However, the overlooked actor in this interplay is the environmental matrix, a player potentially influencing yeast populations and their vectors. This study aims to delve deeper into the intricate, multi-layered connections between yeast populations and ecosystems, focusing on the interactions between the attributes of the environmental matrix, arthropod diversity, and the mycobiota within a renowned yeast-inhabited framework: the vineyard. To investigate these relationships, we sampled both invertebrate and yeast diversity in six organic and conventional vineyards described in terms of management and landscape composition. We identified 80 different invertebrate taxa and isolated 170 yeast strains belonging to 18 species. Notably, new species-specific yeast-insect associations were observed, including the exclusive association between Candida orthopsilosis and Hymenoptera and between Metschnikowia pulcherrima and Coleoptera. These newly identified potential associations provide valuable insights into insect and yeast physiology, hence holding the promise of enhancing our understanding of yeast and arthropod ecology and their collective impact on overall ecosystem health.


Asunto(s)
Artrópodos , Biodiversidad , Levaduras , Animales , Artrópodos/microbiología , Levaduras/clasificación , Levaduras/aislamiento & purificación , Levaduras/genética , Ecosistema , Granjas
2.
BMC Zool ; 6(1): 26, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37170349

RESUMEN

BACKGROUND: Increasing temperatures and changes in precipitation patterns threaten the existence of many organisms. It is therefore informative to identify the functional traits that underlie differences in desiccation resistance to understand the response of different species to changes in water availability resulting from climate change. We used adult dung beetles as model species due to their importance to ecosystem services. We investigated: (i) the effect of physiological (water loss rate, water loss tolerance, body water content), morphological (body mass) and ecological (nesting behaviour) traits on desiccation resistance; (ii) the role of phylogenetic relatedness in the above associations; and, (iii) whether relatively large or small individuals within a species have similar desiccation resistance and whether these responses are consistent across species. RESULTS: Desiccation resistance decreased with increasing water loss rate and increased with increasing water loss tolerance (i.e. proportion of initial water content lost at the time of death). A lack of consistent correlation between these traits due to phylogenetic relatedness suggests that the relationship is not determined by a shared evolutionary history. The advantage of a large body size in favouring desiccation resistance depended on the nesting behaviour of the dung beetles. In rollers (one species), large body sizes increased desiccation resistance, while in tunnelers and dwellers, desiccation resistance seemed not to be dependent on body mass. The phylogenetic correlation between desiccation resistance and nesting strategies was significant. Within each species, large individuals showed greater resistance to desiccation, and these responses were consistent across species. CONCLUSIONS: Resistance to desiccation was explained mainly by the dung beetles' ability to reduce water loss rate (avoidance) and to tolerate water loss (tolerance). A reduction in water availability may impose a selection pressure on body size that varies based on nesting strategies, even though these responses may be phylogenetically constrained. Changes in water availability are more likely to affect dweller species, and hence the ecosystem services they provide.

3.
Glob Chang Biol ; 25(9): 3045-3055, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31077502

RESUMEN

The Luxury Effect hypothesizes a positive relationship between wealth and biodiversity within urban areas. Understanding how urban development, both in terms of socio-economic status and the built environment, affects biodiversity can contribute to the sustainable development of cities, and may be especially important in the developing world where current growth in urban populations is most rapid. We tested the Luxury Effect by analysing bird species richness in relation to income levels, as well as human population density and urban cover, in landscapes along an urbanization gradient in South Africa. The Luxury Effect was supported in landscapes with lower urbanization levels in that species richness was positively correlated with income level where urban cover was relatively low. However, the effect was reversed in highly urbanized landscapes, where species richness was negatively associated with income level. Tree cover was also positively correlated with species richness, although it could not explain the Luxury Effect. Species richness was negatively related to urban cover, but there was no association with human population density. Our model suggests that maintaining green space in at least an equal proportion to the built environment is likely to provide a development strategy that will enhance urban biodiversity, and with it, the positive benefits that are manifest for urban dwellers. Our findings can form a key contribution to a wider strategy to expand urban settlements in a sustainable way to provide for the growing urban population in South Africa, including addressing imbalances in environmental justice across income levels and racial groups.


Asunto(s)
Biodiversidad , Aves , Animales , Ciudades , Humanos , Sudáfrica , Urbanización
4.
PLoS One ; 12(7): e0178077, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28700590

RESUMEN

Cattle farming is a major source of greenhouse gases (GHGs). Recent research suggests that GHG fluxes from dung pats could be affected by biotic interactions involving dung beetles. Whether and how these effects vary among beetle species and with assemblage composition is yet to be established. To examine the link between GHGs and different dung beetle species assemblages, we used a closed chamber system to measure fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from cattle dung pats. Targeting a total of four dung beetle species (a pat-dwelling species, a roller of dung balls, a large and a small tunnelling species), we ran six experimental treatments (four monospecific and two mixed) and two controls (one with dung but without beetles, and one with neither dung nor beetles). In this setting, the overall presence of beetles significantly affected the gas fluxes, but different species contributed unequally to GHG emissions. When compared to the control with dung, we detected an overall reduction in the total cumulative CO2 flux from all treatments with beetles and a reduction in N2O flux from the treatments with the three most abundant dung beetle species. These reductions can be seen as beneficial ecosystem services. Nonetheless, we also observed a disservice provided by the large tunneler, Copris lunaris, which significantly increased the CH4 flux-an effect potentially traceable to the species' nesting strategy involving the construction of large brood balls. When fluxes were summed into CO2-equivalents across individual GHG compounds, dung with beetles proved to emit less GHGs than did beetle-free dung, with the mix of the three most abundant species providing the highest reduction (-32%). As the mix of multiple species proved the most effective in reducing CO2-equivalents, the conservation of diverse assemblages of dung beetles emerges as a priority in agro-pastoral ecosystems.


Asunto(s)
Ciclo del Carbono , Escarabajos/fisiología , Efecto Invernadero , Estiércol , Ciclo del Nitrógeno , Animales , Dióxido de Carbono/análisis , Escarabajos/clasificación , Escarabajos/metabolismo , Metano/análisis , Óxido Nitroso/análisis
5.
Ecology ; 98(2): 433-446, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27859034

RESUMEN

Maintaining multiple ecological functions ("multifunctionality") is crucial to sustain viable ecosystems. To date most studies on biodiversity-ecosystem functioning (BEF) have focused on single or few ecological functions and services. However, there is a critical need to evaluate how species and species assemblages affect multiple processes at the same time, and how these functions are interconnected. Dung beetles represent excellent model organisms because they are key contributors to several ecosystem functions. Using a novel method based on the application of 15 N-enriched dung in a mesocosm field experiment, we assessed the role of dung beetles in regulating multiple aspects of nutrient cycling in alpine pastures over appropriate spatial (up to a soil depth of 20 cm) and temporal (up to 1 yr after dung application) scales. 15 N isotope tracing allowed the evaluation of multiple interrelated ecosystem functions responsible for the cycling of dung-derived nitrogen (DDN) in the soil and vegetation. We also resolved the role of functional group identity and the importance of interactions among co-occurring species for sustaining multiple functions by focusing on two different dung beetle nesting strategies (tunnelers and dwellers). Species interactions were studied by contrasting mixed-species to single-species assemblages, and asking whether the former performed multiple functions better than the latter. Dung beetles influenced at least seven ecological functions by facilitating dung removal, transport of DDN into the soil, microbial ammonification and nitrification processes, uptake of DDN by plants, herbage growth, and changes in botanical composition. Tunnelers and dwellers were found to be similarly efficient for most functions, with differences based on the spatial and temporal scales over which the functions operated. Although mixed-species assemblages seemed to perform better than single-species, this outcome may be dependent on the context. Most importantly though, the different functions were found to be interconnected sequentially as reveled by analyzing 15 N content in dung, soil and vegetation. Taken together, our current findings offer strong support for the contention that the link between biodiversity and ecosystem functions should be examined not function by function, but in terms of understanding multiple functions and how they interact with each other.


Asunto(s)
Escarabajos/fisiología , Ecosistema , Animales , Biodiversidad , Ecología , Isótopos , Isótopos de Nitrógeno/análisis
6.
Oecologia ; 181(4): 1139-50, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27139426

RESUMEN

Many species have shown recent shifts in their distributions in response to climate change. Patterns in species occurrence or abundance along altitudinal gradients often serve as the basis for detecting such changes and assessing future sensitivity. Quantifying the distribution of species along altitudinal gradients acts as a fundamental basis for future studies on environmental change impacts, but in order for models of altitudinal distribution to have wide applicability, it is necessary to know the extent to which altitudinal trends in occurrence are consistent across geographically separated areas. This was assessed by fitting models of bird species occurrence across altitudinal gradients in relation to habitat and climate variables in two geographically separated alpine regions, Piedmont and Trentino. The ten species studied showed non-random altitudinal distributions which in most cases were consistent across regions in terms of pattern. Trends in relation to altitude and differences between regions could be explained mostly by habitat or a combination of habitat and climate variables. Variation partitioning showed that most variation explained by the models was attributable to habitat, or habitat and climate together, rather than climate alone or geographic region. The shape and position of the altitudinal distribution curve is important as it can be related to vulnerability where the available space is limited, i.e. where mountains are not of sufficient altitude for expansion. This study therefore suggests that incorporating habitat and climate variables should be sufficient to construct models with high transferability for many alpine species.


Asunto(s)
Cambio Climático , Clima , Altitud , Animales , Aves , Ecosistema
7.
PLoS One ; 9(9): e107699, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25229237

RESUMEN

Understanding of the role of body mass in structural-functional relationships is pressing, particularly because species losses often occur non-randomly with respect to body size. Our study examined the effects of dung beetle body mass on dung removal at two levels. First, we used the lab experiment to evaluate the efficiency of eight dung beetle species belonging to two functional groups (tunnelers, dwellers) on dung removal. Second, the same species employed in the lab were used in field mesocosms to examine the effects of the two functional groups on dung removal maintaining realistic differences in the total body mass between tunneler and dweller assemblages. Furthermore, the experimental assemblages contained one and four species within each functional group, so the effect of body mass heterogeneity was examined. We used a statistical approach (offset method) which took into account a priori constraints due to the study design allowing us to analyse the effect of larger species in mesocosm style experiments. Body size played a crucial role in dung removal: large beetles were more efficient than small ones and the percentage of removed dung increased with higher body mass heterogeneity. Tunnelers were more efficient than dwellers over both short and long time periods (one month and one year). Significant effects of dwellers were found only after one year. Moreover, our study showed that not including the body mass as an offset in the model resulted in sometimes different results, as the offset expresses dung removal independently of the body mass. This approach confirmed that body size is likely a pivotal factor controlling dung removal efficiency at multiple levels, from single species to overall dung beetle assemblages. Even though other specific traits should be examined, this study has begun to address the consequences of losing individuals with specific traits that are especially sensitive to perturbations.


Asunto(s)
Tamaño Corporal , Escarabajos/anatomía & histología , Escarabajos/metabolismo , Heces , Animales , Laboratorios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA