Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Cybern ; 52(5): 3769-3782, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-32946404

RESUMEN

Internet of Things (IoT) has emerged as a cutting-edge technology that is changing human life. The rapid and widespread applications of IoT, however, make cyberspace more vulnerable, especially to IoT-based attacks in which IoT devices are used to launch attack on cyber-physical systems. Given a massive number of IoT devices (in order of billions), detecting and preventing these IoT-based attacks are critical. However, this task is very challenging due to the limited energy and computing capabilities of IoT devices and the continuous and fast evolution of attackers. Among IoT-based attacks, unknown ones are far more devastating as these attacks could surpass most of the current security systems and it takes time to detect them and "cure" the systems. To effectively detect new/unknown attacks, in this article, we propose a novel representation learning method to better predictively "describe" unknown attacks, facilitating supervised learning-based anomaly detection methods. Specifically, we develop three regularized versions of autoencoders (AEs) to learn a latent representation from the input data. The bottleneck layers of these regularized AEs trained in a supervised manner using normal data and known IoT attacks will then be used as the new input features for classification algorithms. We carry out extensive experiments on nine recent IoT datasets to evaluate the performance of the proposed models. The experimental results demonstrate that the new latent representation can significantly enhance the performance of supervised learning methods in detecting unknown IoT attacks. We also conduct experiments to investigate the characteristics of the proposed models and the influence of hyperparameters on their performance. The running time of these models is about 1.3 ms that is pragmatic for most applications.

2.
IEEE Trans Cybern ; 49(8): 3074-3087, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29994493

RESUMEN

This paper proposes latent representation models for improving network anomaly detection. Well-known anomaly detection algorithms often suffer from challenges posed by network data, such as high dimension and sparsity, and a lack of anomaly data for training, model selection, and hyperparameter tuning. Our approach is to introduce new regularizers to a classical autoencoder (AE) and a variational AE, which force normal data into a very tight area centered at the origin in the nonsaturating area of the bottleneck unit activations. These trained AEs on normal data will push normal points toward the origin, whereas anomalies, which differ from normal data, will be put far away from the normal region. The models are very different from common regularized AEs, sparse AE, and contractive AE, in which the regularized AEs tend to make their latent representation less sensitive to changes of the input data. The bottleneck feature space is now used as a new data representation. A number of one-class learning algorithms are used for evaluating the proposed models. The experiments testify that our models help these classifiers to perform efficiently and consistently on high-dimensional and sparse network datasets, even with relatively few training points. More importantly, the models can minimize the effect of model selection on these classifiers since their performance is insensitive to a wide range of hyperparameter settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA