RESUMEN
Nanosized copper particles (nano Cu) have been incorporated into products in multiple industries, although studies have demonstrated that these particles are nephrotoxic. We investigated the cytotoxicity of nanosized copper particles on rat mesangial cells and measured rates of apoptosis, the expression of caspase-3, and generation of reactive oxygen species. We also measured autophagy through the acridine orange (AO) staining and expression of Beclin-1, microtubule-associated protein 1 light chain 3, and p62 to screen the underlying mechanism of toxicity. Nanosized copper particles inhibited mesangial cell viability, up-regulated the activity of caspase-3, and increased the rates of apoptosis and the generation of reactive oxygen species in a concentration-dependent manner. Exposure to nano Cu increased the formation of acidic vesicular organelles and the expression of Beclin-1, microtubule-associated protein 1 light chain 3, and p62, and treatment with an autophagy inhibitor reduced nephrotoxicity. This indicated that the autophagy pathway is involved in the toxicity induced by nanosized copper particles to mesangial cells. This finding can contribute to the development of safety guidelines for the evaluation of nanomaterials in the future.
Asunto(s)
Cobre , Células Mesangiales , Ratas , Animales , Caspasa 3 , Cobre/toxicidad , Cobre/metabolismo , Células Mesangiales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Beclina-1/metabolismo , Autofagia , Apoptosis , Proteínas Asociadas a Microtúbulos/metabolismo , Línea Celular TumoralRESUMEN
The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.
Asunto(s)
Cambio Climático , Clima Tropical , Biomasa , Demografía , EcosistemaRESUMEN
Nanosized copper particles (nano Cu) have been incorporated into products in multiple industries, although studies have demonstrated that these particles are nephrotoxic. We investigated the cytotoxicity of nanosized copper particles on rat mesangial cells and measured rates of apoptosis, the expression of caspase-3, and generation of reactive oxygen species. We also measured autophagy through the acridine orange (AO) staining and expression of Beclin-1, microtubule-associated protein 1 light chain 3, and p62 to screen the underlying mechanism of toxicity. Nanosized copper particles inhibited mesangial cell viability, up-regulated the activity of caspase-3, and increased the rates of apoptosis and the generation of reactive oxygen species in a concentration-dependent manner. Exposure to nano Cu increased the formation of acidic vesicular organelles and the expression of Beclin-1, microtubule-associated protein 1 light chain 3, and p62, and treatment with an autophagy inhibitor reduced nephrotoxicity. This indicated that the autophagy pathway is involved in the toxicity induced by nanosized copper particles to mesangial cells. This finding can contribute to the development of safety guidelines for the evaluation of nanomaterials in the future.
RESUMEN
Herein, we report the production of a recombinant Tepary bean lectin (rTBL-1), its three-dimensional (3D) structure, and its differential recognition for cancer-type glycoconjugates. rTBL-1 was expressed in Pichia pastoris, yielding 316 mg per liter of culture, and was purified by nickel affinity chromatography. Characterization of the protein showed that rTBL-1 is a stable 120 kDa homo-tetramer folded as a canonical leguminous lectin with two divalent cations (Ca2+ and Mn2+) attached to each subunit, confirmed in its 3D structure solved by X-ray diffraction at 1.9 Å resolution. Monomers also presented a ~2.5 kDa N-linked glycan located on the opposite face of the binding pocket. It does not participate in carbohydrate recognition but contributes to the stabilization of the interfaces between protomers. Screening for potential rTBL-1 targets by glycan array identified 14 positive binders, all of which correspond to ß1-6 branched N-glycans' characteristics of cancer cells. The presence of α1-6 core fucose, also tumor-associated, improved carbohydrate recognition. rTBL-1 affinity for a broad spectrum of mono- and disaccharides was evaluated by isothermal titration calorimetry (ITC); however, no interaction was detected, corroborating that carbohydrate recognition is highly specific and requires larger ligands for binding. This would explain the differential recognition between healthy and cancer cells by Tepary bean lectins.
Asunto(s)
Lectinas/química , Neoplasias/metabolismo , Phaseolus/química , Polisacáridos/química , Proteínas Recombinantes/química , Cristalografía por Rayos X , Glicosilación , Humanos , Lectinas/biosíntesis , Unión Proteica , Proteínas Recombinantes/biosíntesisRESUMEN
One of the few rules in ecology is that communities are composed of many rare and few common species. Trait-based investigations of abundance distributions have generally focused on species-mean trait values with mixed success. Here, using large tropical tree seedling datasets in China and Puerto Rico, we take an alternative approach that considers the magnitude of intraspecific variation in traits and growth as it relates to species abundance. We find that common species are less variable in their traits and growth. Common species also occupy core positions within community trait space indicating that they are finely tuned for the available conditions. Rare species are functionally peripheral and are likely transients struggling for success in the given environment. The work highlights the importance of considering intraspecific variation in trait-based ecology and demonstrates asymmetry in the magnitude of intraspecific variation among species is critical for understanding of how traits are related to abundance.
Asunto(s)
Bosque Lluvioso , Árboles/crecimiento & desarrollo , Clima Tropical , China , Dinámica Poblacional , Puerto Rico , Plantones/crecimiento & desarrollo , Especificidad de la EspecieRESUMEN
We have investigated the processes of community assembly using size classes of trees. Specifically our work examined (1) whether point process models incorporating an effect of size-class produce more realistic summary outcomes than do models without this effect; (2) which of three selected models incorporating, respectively environmental effects, dispersal and the joint-effect of both of these, is most useful in explaining species-area relationships (SARs) and point dispersion patterns. For this evaluation we used tree species data from the 50-ha forest dynamics plot in Barro Colorado Island, Panama and the comparable 20 ha plot at Bubeng, Southwest China. Our results demonstrated that incorporating an size-class effect dramatically improved the SAR estimation at both the plots when the dispersal only model was used. The joint effect model produced similar improvement but only for the 50-ha plot in Panama. The point patterns results were not improved by incorporation of size-class effects using any of the three models. Our results indicate that dispersal is likely to be a key process determining both SARs and point patterns. The environment-only model and joint-effects model were effective at the species level and the community level, respectively. We conclude that it is critical to use multiple summary characteristics when modelling spatial patterns at the species and community levels if a comprehensive understanding of the ecological processes that shape species' distributions is sought; without this results may have inherent biases. By influencing dispersal, the effect of size-class contributes to species assembly and enhances our understanding of species coexistence.
Asunto(s)
Árboles/química , Clima Tropical , China , Modelos Teóricos , PanamáRESUMEN
We investigated the contribution of the duration of overdistention (DOD) to rat bladder function and morphology and explored its possible molecular mechanisms. Bladder overdistention was induced in male Sprague-Dawley rats (200-250 g) by an infusion of saline. Forty rats were divided into 5 groups submitted to different DOD, i.e., 1, 2, 4, and 8 h, and control. Bladder function was evaluated by cystometry. Morphological changes were observed by light and transmission electron microscopy. Compared to control (44.567 ± 3.472 cmH2O), the maximum detrusor pressure of groups with 2-, 4- and 8-h DOD decreased significantly (means ± SEM): 32.774 ± 3.726, 31.321 ± 2.847, and 29.238 ± 3.724 cmH2O. With the increase of DOD, inflammatory infiltration and impairment of ultrastructure were more obvious in bladder tissue. Compared to control (1.90 ± 0.77), the apoptotic indexes of groups with 1-, 2-, 4-, and 8-h DOD increased significantly (6.47 ± 2.10, 10.66 ± 1.97, 13.91 ± 2.69, and 18.33 ± 3.28%). Compared to control (0.147 ± 0.031/0.234 ± 0.038 caspase 3/β-actin and Bax/Bcl-2 ratios), both caspase 3/β-actin and Bax/Bcl-2 ratios of 1-, 2-, 4-, and 8-h DOD increased significantly (0.292 ± 0.037/0.508 ± 0.174, 0.723 ± 0.173/1.745 ± 0.471, 1.104 ± 0.245/4.000 ± 1.048, and 1.345 ± 0.409/8.398 ± 3.332). DOD plays an important role in impairment of vesical function and structure. With DOD, pro-apoptotic factors increase and anti-apoptotic factors decrease, possibly contributing to the functional deterioration and morphological changes of the bladder.
Asunto(s)
Animales , Masculino , Ratas , Vejiga Urinaria/ultraestructura , Apoptosis , Modelos Animales de Enfermedad , Dilatación Patológica/patología , Dilatación Patológica/fisiopatología , Ratas Sprague-Dawley , Factores de Tiempo , Vejiga Urinaria/fisiopatologíaRESUMEN
We investigated the contribution of the duration of overdistention (DOD) to rat bladder function and morphology and explored its possible molecular mechanisms. Bladder overdistention was induced in male Sprague-Dawley rats (200-250 g) by an infusion of saline. Forty rats were divided into 5 groups submitted to different DOD, i.e., 1, 2, 4, and 8 h, and control. Bladder function was evaluated by cystometry. Morphological changes were observed by light and transmission electron microscopy. Compared to control (44.567 ± 3.472 cmH2O), the maximum detrusor pressure of groups with 2-, 4- and 8-h DOD decreased significantly (means ± SEM): 32.774 ± 3.726, 31.321 ± 2.847, and 29.238 ± 3.724 cmH2O. With the increase of DOD, inflammatory infiltration and impairment of ultrastructure were more obvious in bladder tissue. Compared to control (1.90 ± 0.77), the apoptotic indexes of groups with 1-, 2-, 4-, and 8-h DOD increased significantly (6.47 ± 2.10, 10.66 ± 1.97, 13.91 ± 2.69, and 18.33 ± 3.28%). Compared to control (0.147 ± 0.031/0.234 ± 0.038 caspase 3/ß-actin and Bax/Bcl-2 ratios), both caspase 3/ß-actin and Bax/Bcl-2 ratios of 1-, 2-, 4-, and 8-h DOD increased significantly (0.292 ± 0.037/0.508 ± 0.174, 0.723 ± 0.173/1.745 ± 0.471, 1.104 ± 0.245/4.000 ± 1.048, and 1.345 ± 0.409/8.398 ± 3.332). DOD plays an important role in impairment of vesical function and structure. With DOD, pro-apoptotic factors increase and anti-apoptotic factors decrease, possibly contributing to the functional deterioration and morphological changes of the bladder.