Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 259: 119576, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38996958

RESUMEN

The interaction between extracellular polymeric substances (EPS) in municipal sludge and antibiotics in wastewater is critical in wastewater treatment, resource recovery, and sludge management. Therefore, it is increasingly urgent to investigate the distribution coefficient (Log K) of sulfonamide antibiotics (SAs) in EPS, particularly in sludge-derived dissolved organic carbon (DOC) and aqueous phase systems. Herein, through balance experiments, the concentrations of SAs were determined using alkaline extraction EPS (AEPS) and alginate-like extracellular polymer (ALE) systems, and the Log KDOC values were determined. The results showed that the Log KDOC of AEPS was higher than that of ALE, which exhibited a negative KDOC value, indicating an inhibitory effect on dissolution. For the three SAs studied, the Log KDOC values were in the following order: sulfamethoxazole > sulfapyridine > sulfadiazine. This order can be attributed to the differing physicochemical properties, such as polarity, of the SAs. Three-dimensional excitation-emission matrix fluorescence spectra and fitting results indicated a lack of aromatic proteins dominated by tryptophan and humus-like substances in ALE. Meanwhile, the hydrophobic interaction of aromatic proteins dominated by tryptophan was the main driving force in the binding process between AEPS and SAs.


Asunto(s)
Antibacterianos , Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Sulfonamidas , Contaminantes Químicos del Agua , Aguas del Alcantarillado/química , Antibacterianos/análisis , Antibacterianos/química , Sulfonamidas/análisis , Sulfonamidas/química , Matriz Extracelular de Sustancias Poliméricas/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos
2.
Int J Biol Macromol ; 270(Pt 2): 132338, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763237

RESUMEN

Extracellular polymeric substances (EPSs) in excess sludge of wastewater treatment plants are valuable biopolymers that can act as recovery materials. However, effectively concentrating EPSs consumes a significant amount of energy. This study employed novel energy-saving pressure-free dead-end forward osmosis (DEFO) technology to concentrate various biopolymers, including EPSs and model biopolymers [sodium alginate (SA), bovine serum albumin (BSA), and a mixture of both (denoted as BSA-SA)]. The feasibility of the DEFO technology was proven and the largest concentration ratios for these biopolymers were 94.8 % for EPSs, 97.1 % for SA, 97.8 % for BSA, and 98.4 % for BSA-SA solutions. An evaluation model was proposed, incorporating the FO membrane's water permeability coefficient and the concentrated substances' osmotic resistance, to describe biopolymers' concentration properties. Irrespective of biopolymer type, the water permeability coefficient decreased with increasing osmotic pressure, remained constant with increasing feed solution (FS) concentration, increased with increasing crossing velocity in the draw side, and showed little dependence on draw salt type. In the EPS DEFO concentration process, osmotic resistance was minimally impacted by osmotic pressure, FS concentration, and crossing velocity, and monovalent metal salts were proposed as draw solutes. The interaction between reverse diffusion metal cations and EPSs affected the structure of the concentrated substances on the FO membrane, thus changing the osmotic resistance in the DEFO process. These findings offer insights into the efficient concentration of biopolymers using DEFO.


Asunto(s)
Ósmosis , Biopolímeros/química , Alginatos/química , Albúmina Sérica Bovina/química , Permeabilidad , Presión Osmótica , Agua/química , Bovinos , Membranas Artificiales , Animales , Purificación del Agua/métodos
3.
Membranes (Basel) ; 13(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37755200

RESUMEN

Efficient separation techniques play an important role in the process of resource recovery, and these techniques include physical, chemical, physicochemical, and/or biological methods that are selected for their low cost and low energy consumption and for being free of secondary pollution [...].

4.
Membranes (Basel) ; 13(2)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36837710

RESUMEN

Calcium alginate (Ca-Alg) is a novel target product for recovering alginate from aerobic granular sludge. A novel Ca-Alg production method was proposed herein where Ca-Alg was formed in a sodium alginate (SA) feed solution (FS) and concentrated via forward osmosis (FO) with Ca2+ reverse osmosis using a draw solution of CaCl2. An abnormal reverse solute diffusion was observed, with the average reverse solute flux (RSF) decreasing with increasing CaCl2 concentrations, while the average RSF increased with increasing alginate concentrations. The RSF of Ca2+ in FS decreased continuously as the FO progressed, using 1.0 g/L SA as the FS, while it increased initially and later decreased using 2.0 and 3.0 g/L SA as the FS. These results were attributed to the Ca-Alg recovery production (CARP) formed on the FO membrane surface on the feed side, and the percentage of Ca2+ in CARP to total Ca2+ reverse osmosis reached 36.28%. Scanning electron microscopy and energy dispersive spectroscopy also verified CARP existence and its Ca2+ content. The thin film composite FO membrane with a supporting polysulfone electrospinning nanofiber membrane layer showed high water flux and RSF of Ca2+, which was proposed as a novel FO membrane for Ca-Alg production via the FO process with Ca2+ reverse diffusion. Four mechanisms including molecular sieve role, electrification of colloids, osmotic pressure of ions in CARP, and FO membrane structure were proposed to control the Ca-Alg production. Thus, the results provide further insights into Ca-Alg production via FO along with Ca2+ reverse osmosis.

5.
Membranes (Basel) ; 13(1)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36676881

RESUMEN

The recycling of extracellular polymeric substances (EPSs) from excess sludge in wastewater treatment plants has received increasing attention in recent years. Although membrane separation has great potential for use in EPS concentration and recovery, conventional membranes tend to exhibit low water flux and high energy consumption. Herein, electrospun nanofiber membranes (ENMs) were fabricated using polyvinylidene fluoride (PVDF) and used for the recovery of EPSs extracted from the excess sludge using the cation exchange resin (CER) method. The fabricated ENM containing 14 wt.% PVDF showed excellent properties, with a high average water flux (376.8 L/(m2·h)) and an excellent EPS recovery rate (94.1%) in the dead-end filtration of a 1.0 g/L EPS solution at 20 kPa. The ENMs displayed excellent mechanical strength, antifouling properties, and high reusability after five recycles. The filtration pressure had a negligible effect on the average EPS recovery rate and water flux. The novel dead-end filtration with an EPS filter cake on the ENM surface was effective in removing heavy-metal ions, with the removal rates of Pb2+, Cu2+, and Cr6+ being 89.5%, 73.5%, and 74.6%, respectively. These results indicate the potential of nanofiber membranes for use in effective concentration and recycling of EPSs via membrane separation.

6.
Chemosphere ; 285: 131483, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34329149

RESUMEN

The water content in the recycled alginate solutions from aerobic granular sludge was nearly 100%. Forward osmosis (FO) has become an innovative dewatering technology. In this study, the FO concentration of sodium alginate (SA) was investigated using calcium chloride as a draw solute. The reverse solute flux (RSF) of calcium ions in FO had a beneficial effect, contrary to the findings of previous literature. The properties of the concentrated substances formed on the FO membrane on the feed side were analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, verifying that calcium alginate (Ca-Alg), which can be used as a recycled material, was formed on the FO membrane on the feed side owing to the interaction between SA and permeable calcium ions. Water flux increased significantly with the increase in calcium chloride concentration, while the concentration of SA had little influence on the water flux in FO. Based on this discovery, we propose a novel method for the concentration and recovery of alginate, in which the RSF of calcium ions is utilized for recovering Ca-Alg by FO, with calcium chloride as a draw solute.


Asunto(s)
Alginatos , Purificación del Agua , Membranas Artificiales , Ósmosis , Soluciones
7.
Chemosphere ; 283: 131181, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34146882

RESUMEN

The recovery of polymeric substances from excess sludge is gaining significant research interest in future wastewater treatment technologies. We present a surfactant-enhanced ultrasonic method to extract mixed polymeric substances with typical functional groups from excess sludge. Four potential reasons were revealed for the higher efficiency upon ultrasonication with surfactant: low surface tension, damage of non-covalent bonds between extracellular polymeric substances and cells, enhanced dissolution of polymeric substances, and release of intracellular polymeric substances caused by cell lysis. The increase in extraction efficiency after the addition of cetyltrimethylammonium bromide and sodium dodecyl sulfate reached the maximum of 76.5% and 53.1%, respectively. The contents of polysaccharides, proteins, and DNA were approximately 50% of the total polymeric substances, and the content of protein was higher than that of polysaccharide; the concentration change of the surfactant had a minimal effect on these contents. For the polymeric substances extracted via ultrasonication with surfactant, the size was smaller than that for the non-surfactant extraction; moreover, the contents of metals decreased significantly (Al: 0.18% → 0%; Na: 0.15% → 0%; Ca: 0.24% → 0.11%), which was probably caused by the interaction between the surfactant and metal ions in the excess sludge. The surfactant had a negligible effect on the properties of polymeric substances, adsorption capacity of polymeric substances for heavy metal ions, and dewatering performance of sludge. The recycled polymeric substances may be used as a substitute for commercial adsorbents of heavy metal ions. Thus, the obtained results provide further insight into the recovery of polymeric substances from excess sludge via the surfactant-enhanced ultrasonic method.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Matriz Extracelular de Sustancias Poliméricas , Tensoactivos , Ultrasonido
8.
Sci Total Environ ; 718: 137366, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32092521

RESUMEN

With a high rejection coefficient for trace pharmaceuticals and personal care products (PPCPs), forward osmosis (FO) membrane separation has become a cutting-edge technology in water treatment owing to its low energy consumption and low membrane fouling. Wastewater contains many types of PPCPs, and one pharmaceutical molecule affects the separation behaviors of other pharmaceuticals in FO. Therefore, simultaneous FO of multiple PPCPs needs to be investigated. In this study, the separation behaviors of four trace pharmaceuticals (ciprofloxacin (CIP), sulfamethoxazole (SMX), acetaminophen (ACP), carbamazepine (CBZ)), individually (termed "single pharmaceuticals") and in combination (termed "binary pharmaceuticals" as two pharmaceuticals were studied simultaneously), during FO were investigated at trace concentrations using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results showed that for single pharmaceuticals, the molecular sieve dominates their retention rate-the retention rate increases with increasing Stokes radius of the molecules (29.1 â†’ 94.8% for 0.35 â†’ 0.47 nm). For binary pharmaceuticals, the retention rates of both pharmaceuticals without charge decrease with increasing total molecule number (for ACP + CBZ, 31.4 â†’ 52.1% (ACP), 75.1 â†’ 83.0% (CBZ)). Negatively charged pharmaceuticals are mutually exclusive with the negatively charged FO membrane, resulting in the increase of the retention rate of pharmaceuticals (83.1 â†’ 90.1% (CIP) when CIP + ACP â†’ CIP + SMX). In the presence of a positively charged pharmaceutical, the retention rate of negatively charged pharmaceuticals decreases (85.7 â†’ 80.4% (SMX) when SMX + ACP â†’ SMX + CIP) because the positively charged pharmaceutical neutralizes the negative charge on the FO membrane surface, resulting in the weakening of electrostatic repulsion between the negatively charged pharmaceutical and FO membrane surface. The positively charged molecule attracts the negatively charged molecule, forming a couple of molecules with larger molecule weight and increasing the retention rate of the pharmaceuticals (80.4 â†’ 88.2% (SMX) when pH = 7 â†’ 5 for SMX + CIP). The results suggest that the interactions between pharmaceuticals cannot be ignored in the process of removing PPCPs by FO.


Asunto(s)
Ósmosis , Purificación del Agua , Cromatografía Liquida , Espectrometría de Masas en Tándem , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA