Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; : e2405351, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162121

RESUMEN

The construction of stable and efficient nanocomposites with low addition and light weight has always been the goal pursued in the field of electromagnetic wave (EMW) absorption. In this study, the Co@CNTs nanocomposites with Co nanoparticles (13 nm) nanoconfined in the carbon nanotube (CNT) are successfully synthesized by a simple hydrothermal method and phenolic assisted pyrolysis method. The degree of graphitization of CNTs and the microstructure of Co nanoparticles can be effectively regulated by controlling the calcination temperature. The sample calcined at 700 °C can obtain excellent absorption performance at a low filling capacity of 10 wt.%: the minimum reflection loss (RL) is -41.2 dB and the effective absorption bandwidth (EAB) reaches a maximum width of 14.2 GHz. When the sample thickness is only 2.2 mm, the EAB of <-20 dB reaches 8.3 GHz, which is the maximum EAB of most current Co-based absorbers. In particular, the polarization and ferromagnetic coupling behaviors are elucidated in depth with the aid of electromagnetic field simulations using the High-Frequency Structure Simulator (HFSS). This work provides a new nanoconfinement strategy for constructing the Co@CNTs nanocomposites as lightweight and ultra-broadband absorbing materials for EMW protection and EMW pollution control.

2.
Small ; : e2402982, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011738

RESUMEN

The synergies of nanoconfinement and catalysis is an effective strategy to improve the kinetic and thermodynamic properties of Mg-based materials. However, obtaining Mg-based materials with high loading, anti-aggregation, and containing nanocatalysts to achieve dehydrogenation at room temperature remains a huge challenge. Herein, a novel and universal preparation strategy for Mg-Co@C nanocomposites with 9.5 nm Mg nanoparticles and 9.4 nm Co nanocatalysts embedded in carbon scaffold is reported. The 9.3 nm MgBu2 nanosheets precipitated by solvent displacement are encapsulated in ZIF-67 to prepare MgBu2@ZIF-67 precursors, then removing excess MgBu2 on the precursor surface and pyrolysis to obtain Mg-Co@C. It is worth noting that the Mg loading rate of Mg-Co@C is as high as rare 69.7%. Excitingly, the Mg-Co@C begins to dehydrogenate at room temperature with saturate capacity of 5.1 wt.%. Meanwhile, its dehydrogenation activation energy (Ea(des) = 68.8 kJ mol-1) and enthalpy (ΔH(des) = 61.6 kJ mol-1) significantly decrease compared to bulk Mg. First principles calculations indicate that the hydrogen adsorption energy on the Mg2CoH5 surface is only -0.681 eV. This work provides a universally applicable novel method for the preparation of nanoscale Mg-based materials with various nanocatalysts added, and provides new ideas for Mg-based materials to achieve room temperature hydrogen storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA