Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1289100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029232

RESUMEN

Introduction: The adhesion of flavescence dorée phytoplasma to the midgut epithelium cells of their insect vectors is partially mediated by the variable membrane protein A (VmpA), an adhesin which shows lectin properties. In order to identify the insect receptor for VmpA, we identified Euscelidius variegatus cell proteins interacting with recombinant VmpA-His6. Methods: The E. variegatus proteins were identified by mass spectrometry analysis of VmpA-E. variegatus protein complexes formed upon in vitro interaction assays. To assess their impact in VmpA binding, we reduced the expression of the candidate genes on E. variegatus cells in culture by dsRNA-mediated RNAi. The effect of candidate gene knockdown on VmpA binding was measured by the capacity of E. variegatus cells to bind VmpA-coated fluorescent beads. Results and discussion: There were 13 candidate proteins possessing potential N-glycosylation sites and predicted transmembrane domains selected. The decrease of expression of an unknown transmembrane protein with leucine-rich repeat domains (uk1_LRR) was correlated with the decreased adhesion of VmpA beads to E. variegatus cells. The uk1_LRR was more expressed in digestive tubes than salivary glands of E. variegatus. The protein uk1_LRR could be implicated in the binding with VmpA in the early stages of insect infection following phytoplasmas ingestion.


Asunto(s)
Hemípteros , Phytoplasma , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Phytoplasma/genética , Phytoplasma/metabolismo , Proteína Estafilocócica A , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Hemípteros/metabolismo , Insectos Vectores , Enfermedades de las Plantas
2.
Sci Rep ; 13(1): 2211, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750707

RESUMEN

To perform its propagative and circulative cycle into its insect vector, the flavescence dorée phytoplasma invades different cell types. Clathrin-mediated endocytosis is used by a wide range of bacteria to infect eukaryote cells. Among the insect proteins interacting with the phytoplasma adhesin VmpA, we identified the adaptor protein complex AP-1 and AP-2 suggesting that phytoplasmas could enter the insect cells via clathrin-mediated endocytosis. By infection assays of insect cells in culture, we showed that phytoplasmas entry into Drosophila S2 cells was more efficient than infection of the Euva cell line developed from the insect vector Euscelidius variegatus. Chlorpromazine, cytochalasin D and knockdown of clathrin heavy chain (chc) gene expression using RNA interference inhibited entry of phytoplasmas into S2 cells. During invasion of S2 cells, phytoplasmas were observed very closed to recombinant GFP-labelled clathrin light chain. To verify the role of clathrin in the insect colonization by phytoplasmas, RNAi was performed via artificial feeding of chc dsRNA by the vector E. variegatus. This decreased the expression of chc gene in the midgut and heads of E. variegatus. The chc lower expression correlated to a decreased of midgut and salivary gland cells colonization after the insects had ingested phytoplasmas from infected plants. In conclusion, results indicate that clathrin is important for the FD phytoplasma to enter insect cells and colonize its insect vector.


Asunto(s)
Hemípteros , Phytoplasma , Animales , Phytoplasma/genética , Adhesinas Bacterianas/metabolismo , Hemípteros/microbiología , Endocitosis , Insectos Vectores/microbiología , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA