Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39256339

RESUMEN

Heavy metal concentrations, which have increased continuously in the environment this century due to anthropogenic factors, severely threaten human and environmental health. Antimony (Sb) is one of the most toxic and harmful heavy metals in terms of human and environmental health. Therefore, the priority research subjects are monitoring the alteration of Sb pollution in the airborne and reducing pollution. This study was conducted to conclude the proper species to monitor and drop airborne Sb contamination on trees grown in Düzce, the 5th most polluted European city. This study examined samples taken from Pseudotsuga menziesii, Cupressus arizonica, Pinus pinaster, Picea orientalis, and Cedrus atlantica, and the Sb concentration changes based on tree species, route, tissue, and age range in the last 40 years were evaluated. The study hypothesizes that Sb concentration varies depending on (1) tree species, (2) direction, (3) plant tissue, and (4) age range, all confirmed in this study. In conclusion, the maximum concentrations were achieved in the outer bark and east (5.45 µg g-1) and north directions (6.72 µg g-1), with high traffic density. In addition, the mining and industrial places (sources of metal pollution) are not close to the study area. Therefore, it was concluded that traffic pollution was the primary source of Sb pollution in the study area. The study revealed that C. arizonica is the most suitable species for monitoring and reducing the change in Sb pollution because the highest Sb concentration (4.47 µg g-1) in wood (the largest organ) was obtained in C. arizonica.

2.
Environ Monit Assess ; 196(8): 689, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958781

RESUMEN

Authorities have long proved the utility of bioindicators in monitoring the state of environmental pollution. Some biological indicators can measure environmental pollutant levels, and many tree species have been tested for suitability for monitoring purposes. The differences in morphological characteristics in the trees have demonstrated the effects of human activities on different materials. Measuring bark and wood biomass from contaminated sites was identified and directly compared with those from a clean site or areas characterized by distinct contamination sources. However, preliminary results demonstrate the approach's potential in the realization of strategies for disease control and promoting health to reduce environmental and health inequalities in at-risk urban areas. Picea orientalis L. and Cedrus atlantica Endl., especially their bark, can be regarded as a more robust storage of Cu (37.95 mg/kg) and Mn (188.25 mg/kg) than Pinus pinaster, Cupressus arizonica, and Pseudotsuga menziesii, which and is therefore a better bioindicator for Cu and Mn pollution. Considering the total concentrations as a result of the study, the pollution is thought to be caused by environmental problems and traffic in the region. The deposition of Cu, Mn, Ni, and Zn elements was found P. menziesii (60, 443, 58, and 258 mg/kg) and P. orientalis (76, 1684, 41, and 378 mg/kg) and seems to reflect atmospheric quite clearly compared to P. pinaster, C. arizonica, and C. atlantica. Ni and Zn concentrations have significantly increased since 1983, and P. menziesii and P. orientalis can be potentially valuable bioindicators for emphasizing polluted fields.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Corteza de la Planta , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Corteza de la Planta/química , Árboles , Metales Pesados/análisis , Monitoreo Biológico/métodos , Ciudades , Picea/química
3.
Environ Monit Assess ; 196(3): 282, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38369612

RESUMEN

The increase in heavy metal concentrations in the air, especially after the Industrial Revolution, is notable for the scientific world because of the adverse effects that threaten environmental and human health. Among the trace elements, nickel (Ni) is carcinogenic, and all barium (Ba) compounds are toxic. Trace elements are critical for human and environmental health. Their threat further increases, especially in the urban areas and surroundings with a high population. In urban areas, the trace element contamination in the airborne can be reduced using plants. However, which plant and plant organs absorb trace elements could not be determined. In the present study, Ni and Ba concentrations in the branch, wood, and leaf samples of 14 species collected from the city center of Mersin province were determined. As a result, broad-leaved species' Ni and Ba concentrations in their leaf sample were generally higher than other species. Almost all species had the lowest Ni and Ba concentrations in their wood samples. Among these 14 species, it was found that Ni concentration was very high, especially in non-washed leaves of Platanus orientalis, Photinia serrulata, and Citrus reticulate, and Ba concentration was very high in Citrus reticulata, Chamaecyparis lawsoniana, Laurus nobilis, and Acer hyrcanum. Using broad-leaved species in urban areas where pollution is at high levels will significantly contribute to reducing Ni and Ba pollution. It is recommended that these points be considered in future urban landscaping projects.


Asunto(s)
Metales Pesados , Oligoelementos , Humanos , Níquel , Turquía , Monitoreo del Ambiente , Metales Pesados/análisis , Plantas
4.
Environ Monit Assess ; 193(12): 771, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34738174

RESUMEN

Global climate change will cause significant changes in climate parameters, especially temperature increases and changes in precipitation regimes worldwide. Since the life of living things is directly related to climate parameters, this process will inevitably affect all living things. The plants will be the most affected living things from this process because they do not have an effective movement and migration mechanism. Therefore, global climate change will cause significant species and population losses in plants. To minimize the potential loss of species and populations, it is necessary to predetermine the potential changes in species' distribution areas and take necessary actions. Therefore, this study was aimed to determine the distribution areas of three Tilia species (Tilia tomentosa, Tilia cordata, and Tilia platyphyllos), which have economic, ecologic, and social value and show the local distribution in Turkey and to determine how they will be affected by global climate change. Within this scope, nineteen bioclimatic variables, Emberger climate classification, aspect, and topographic altitude variable were used in the modeling process. By modeling the scenarios SSP 245 and SSP 585, the projections were made for 2040, 2060, 2080, and 2100 regarding the areas suitable for the growth of these species and how these areas will change compared to their current situation. The results suggest that the distribution areas of all three Tilia species will change due to climate change, and the area of loss will be 43.5 km2 (4%) for T. tomentosa, 9953.6 km2 (15%) for T. platyphyllos, and 448.0 km2 (19%) for T. cordata. Moreover, a more important point here is that increases and decreases will be observed in their distribution areas, and these changes will occur in a short process and at significant levels. In this case, the migration mechanism that these species will require must be provided by humans.


Asunto(s)
Cambio Climático , Tilia , Ecología , Monitoreo del Ambiente , Humanos , Turquía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA